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1 Introduction

Imperfect competition distorts market allocations by raising the equilibrium price above

marginal cost because Þrms have market power. The size of the distortion depends upon

the properties of the industry demand curve and the number of competing Þrms as well as

the assumed model of strategic Þrm interaction. Our objective in this paper is to quantify

the extent of the distortion, according to various surplus benchmarks, as a function of the

number of competitors and the curvature of the demand curve for the pre-eminent case of

Cournot interaction. The analysis shows that the fraction of potential (Þrst-best) social

surplus captured by producers increases as demand becomes more concave. We also provide

bounds on consumer surplus and deadweight loss which are a function of (potentially) ob-

servable magnitudes, such as producer surplus. These bounds do not depend on a particular

speciÞcation of demand but rather on two parameters that measure the generalized concavity

and convexity of demand.

The paper complements three bodies of literature on imperfect competition. The Þrst is

the literature that addresses market performance under imperfect competition, and traces

its lineage back through Mankiw and Whinston (1986), through Spence (1976) and Dixit

and Stiglitz (1977), and ultimately to Chamberlin (1933). The emphasis in that literature

has been on the long-run free-entry equilibrium, with the issue being whether too many or

too few Þrms enter the market. In that sense, the market performance measure used is the

number of Þrms, though there has been no attempt to quantify the extent of the deadweight

loss. By contrast, our work can be viewed as a short-run analysis, with the number of Þrms

Þxed. We consider the more fundamental issue of the size of the various surpluses reaped

(producer surplus and consumer surplus) and unreaped (deadweight loss) in the market.

The second literature concerns estimation of welfare loss due to market power, and goes

back to Harberger�s (1954) provocative study that estimated monopoly deadweight loss as

0.1% of GNP. This famous study of distortionary �triangles� has been criticized in several

respects, including the use of the proÞt data (for example, average proÞt levels are used as a

benchmark to gauge �normal� proÞts), the assumption of linear demand, and the assumption

of unit elasticity of demand for all industries. Subsequent studies (also criticized heavily)

have used proÞt and cost data differently, and typically have assumed linear demand or
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a constant elasticity. Cowling and Mueller (1978) have suggested that welfare loss could

be up to 14% of GNP. It is not our intention here to further investigate the use of proÞt

data, but we do specify a consistent theoretical model that takes as its starting point the

equilibrium oligopoly pricing condition and uses it to then indicate bounds on deadweight

loss that depend on the curvature of demand.

The third complementary body of literature addresses equilibrium existence and unique-

ness in the Cournot model. Extended concavity concepts have been used to derive impor-

tant properties of the Cournot equilibrium. This literature traces its lineage back through

Novshek (1985) to McManus (1964). Most recently, Deneckere and Kovenock (1999) have

synthesized previous results and recast them in terms of properties of the direct demand.

Equilibrium existence and uniqueness are ensured if the reciprocal of demand is convex

(equivalently, demand is (−1)-concave). Extended concavity properties are also at the heart

of some questions on tax incidence under imperfect competition. As we elaborate in the text,

Seade (1987) has shown that a unit tax will be passed on by less than 100% (no tax over-

shifting) if demand is logconcave. This result is a comparative static property of the Cournot

equilibrium outcome. Similarly, Þrm proÞts cannot increase with a unit tax if demand has

the weaker property of (−1)-concavity.1

The present analysis uses the general concept of ρ-concavity that was introduced into

economics by Caplin and Nalebuff (1991a) and applied to (Bertrand) oligopoly in Caplin and

Nalebuff (1991b). This concept encompasses as special cases standard concavity (ρ = 1),

logconcavity (ρ = 0) and (−1)-concavity where the reciprocal of the function is convex.

The larger is ρ, the �more concave� the demand function. In order to obtain a tighter

characterization of demand curvature we also use the parallel concept of ρ-convexity whereby

the lower ρ the �more convex� is demand.

Section 2 provides the intuition for the approach by deriving surplus bounds for a mo-

nopolist facing a concave demand. Section 3 presents a general background to the use of

ρ-concavity and ρ-convexity and delivers relations between functions and their inverses. Sec-

tion 4 constitutes the core of the paper. For n Þrms in a symmetric Cournot oligopoly and an

observed equilibrium price, we Þrst determine bounds on the actual demand curve given that

1Anderson, de Palma, and Kreider (2001) suggest that similar conclusions hold in a model of Bertrand
competition with product differentiation.
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it must lie between two curvature bounds. These bounds on the demand function then de-

termine the bounds on several surplus measures, such as consumer surplus, deadweight loss,

and the fraction of producer surplus in the total potential surplus (i.e., the perfectly com-

petitive benchmark level). In section 5, we extend the bounds analysis to Cournot oligopoly

with asymmetric costs. Section 6 concludes with some comments about the welfare costs of

excessive entry.

2 A Monopoly with Concave Demand

The basic idea can be illustrated simply for the case of concave demand. Consider a monop-

olist with constant marginal cost, c. Suppose that demand is given by D(p), where D is a

strictly decreasing and twice continuously differentiable function on some interval [0, p], and

is zero on [p,∞), and suppose that c < p. The monopoly producer surplus is

π = (p− c)D(p)

which admits a unique maximum whenD is concave on [0, p]. The maximum is characterized

by

(pm − c)D0(pm) +D(pm) = 0. (1)

It is helpful to illustrate the solution on a diagram, where we break with Marshallian

tradition and ßip the price and quantity axes.2 From Figure 1 and (1), we see that the

tangent to the demand curve at pm reaches the line p = c at a (�competitive�) quantity level

of 2Qm where Qm = D(pm). Since the demand curve lies everywhere below the tangent line,

the deadweight loss (DWL) is less than half the monopoly producer surplus.

INSERT FIGURE 1.

A similar argument applies to consumer surplus, CS. The tangent to the demand curve

at pm reaches the price axis at 2pm −c i.e. pm − c above pm. Once more, the demand curve
lies below the tangent line, and the triangle below the tangent line has area (pm−c)D(pm)/2.

This means that consumer surplus is bounded above by half the monopoly gross producer

surplus, denoted πm.

2It is easy enough to work with the inverse demand function for the concavity analysis, but the later
ρ-concavity analysis is greatly facilitated by using the demand function.
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In summary, both DWL/πm and CS/πm are bounded above by one half when demand

is concave, with the linear demand case yielding the maximal ratio of 1/2. When demand is

convex the two ratios both exceed one half, as is evident from the geometry of the problem.

As long as demand is not �too� convex, an interior solution still exists to the monopoly

problem. The bounds on surplus can be calculated using a generalization of the method

above. The rest of this paper elaborates upon this generalization and the corresponding

surplus bounds. We next describe the properties of the curvature restrictions.

3 Demand curvature

The degree of concavity of a function can be parameterized using the concept of ρ-concavity

as explained and applied in Caplin and Nalebuff (1991a and b). We also use the parallel

concept of ρ-convexity to parameterize the degree of convexity of a function. Although it is

not true that any arbitrary function is both ρ0-concave and ρ”-convex (for some extended

real numbers ρ0 and ρ”), we shall show that this is true for any demand function. The key

features of a demand function that ensure that it can be characterized in this manner are

that it is strictly positive on the interior of its support and it is monotone.

Definition 1 Consider a strictly positive function D̃ with a convex domain B ⊆ <+.

For ρ 6= 0, D̃ is ρ-concave if, for all p0, p1 ∈ B,

D̃(pλ) ≥
h
(1− λ)D̃(p0)

ρ + λD̃(p1)
ρ
i1/ρ

, 0 ≤ λ ≤ 1, (2)

where pλ = (1− λ)p0 + λp1. For ρ = 0, D̃ is 0-concave if

ln D̃(pλ) ≥ (1− λ) ln D̃(p0) + λ ln D̃(p1), 0 ≤ λ ≤ 1. (3)

A ρ-convex function is deÞned analogously by reversing the inequalities in (2) and (3).

For ρ = 1, (2) is the standard deÞnition of a concave function. For ρ > 0, (2) means

that D̃ρ is concave, while for ρ < 0, (2) means that D̃ρ is convex. The 0-concave case (3) is

obtained by taking the limit as ρ tends to 0 of (2), and is termed logconcavity. The larger is

ρ, the more stringent the concavity restriction: if D̃ is ρ-concave, it is also ρ0-concave for all

ρ0 < ρ. To see this, consider ρ > ρ0 > 0. Then if D̃ρ is concave, any increasing and concave
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function of D̃ρ is also concave. In particular, D̃ρ0
=

³
D̃ρ

´ρ0/ρ
is concave. A similar argument

applies for ρ < 0, and it is readily shown that D̃ρ concave for ρ > 0 implies D̃ is logconcave,

and that logconcavity implies D̃ρ is convex for ρ < 0. For example, a concave function

(ρ = 1) is also a logconcave function (ρ = 0), but not conversely. In turn, a logconcave

function is (−1)-concave, meaning that 1/D̃ is convex, and a ρ-concave function for any

ρ ∈ < is quasiconcave (which corresponds to (−∞)-concavity). In the sequel we shall refer
to one function as �more concave� than another when its ρ value is higher.

A similar taxonomy applies for ρ-convex functions. The case ρ = 1, is the standard

deÞnition of a convex function. If ρ > 0, then D̃ρ is convex, while for ρ < 0, D̃ρ is concave.

Logconvexity corresponds to the 0-convex case. The smaller is ρ, the more stringent the

convexity restriction. Hence if D̃ is ρ-convex, it is also ρ”-convex for all ρ” > ρ. A logconvex

function (ρ = 0) is also a convex function (ρ = 1), which in turn is also a quasiconvex

function (ρ = ∞).

Claim 1 Consider a strictly positive and decreasing function, D with a convex domain B ⊆
<+. There is a pair of values in the extended real line, ρ0 and ρ”, such that D is ρ0-concave

and ρ”-convex. If D is ρ0-concave and ρ”-convex, then ρ0 ≤ ρ”.

Proof.The Þrst part follows since decreasing functions are both quasiconvex and quasi-

concave. Second, suppose instead that ρ0 > ρ”. Then D is ρ”-concave and ρ0-convex. But

then Dρ”
and Dρ

0
are linear, which is clearly impossible.

If ρ0 = ρ”, then D is ρ-linear. For ρ 6= 0, this means that we can write D(p) = (a− bp)1/ρ

for a− bp ≥ 0 and D = 0 otherwise, with b/ρ > 0 so that demand is positive and decreasing

on its support. The case a = 0 with ρ < 0 is of interest because it corresponds to constant

elasticity of demand.3 This elasticity is η = 1/ρ < 0. For ρ = 0, we can write demand as

D(p) = ae−bp. These ρ-linear speciÞcations are useful in the interpretation of the bound

results below.

The ρ-concavity properties of D also imply restrictions on its inverse.

Proposition 1 Let D be strictly positive and decreasing on its (convex) domain, B. Let P

3Constant elasticity of demand formulations have been applied to welfare loss calculations by Cowling
and Mueller (1978), Masson and Shanaan (1984), Daskin (1991), and others.
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be the inverse of D, with P deÞned over A which is the range of D. Assume both D and P

are twice continuously differentiable. Then

−P”(Q)Q
P 0(Q)

≤ (1− ρ) iff [1− ρ](D0)2 −D”D ≥ 0 iff D is ρ-concave.

Proof.If D is ρ-concave, then, by deÞnition, Dρ is convex for ρ < 0, lnD is concave for

ρ = 0, and Dρ is concave for ρ > 0. In each case, D
0
D
Dρ is decreasing, or

(ρ− 1)(D0)2 +D”D ≤ 0 (4)

Now, set D(p) = Q, so that D0(p) = 1/P 0(Q) and D”(p) = −P”(Q)/[P 0(Q)]3. Replacing

these expressions in condition (4) gives the condition P”(Q)Q+ (1− ρ)P 0(Q) ≤ 0.

We will explore the implications of this result in the context of Cournot competition in

the next section (and we justify the notation Dand P for the functions at that point). For

the present, we note one alternative possible application in another context. Suppose that

P is a von Neumann-Morgenstern utility function, with the consumer�s wealth level as its

argument. Then the elasticity of the slope of P is the measure of relative risk aversion, and

so the proposition relates relative risk aversion to the curvature of the inverse of the utility

function. Thus the more risk averse the individual, the more convex the inverse of his/her

utility function.4 The proposition therefore shows that the concepts of ρ-concavity and ρ-

convexity are related to other standard measures in economics of a function�s curvature.

We now return to the main case at hand, the application to surplus bounds under Cournot

equilibrium.

4 Cournot equilibrium with symmetric costs

The analysis in section 2 above is a special case of a more general formulation in two re-

spects. First, it is a monopoly analysis, and second, demand is concave. In this section we

generalize to Cournot equilibrium under symmetric costs and we also apply the generalized

characterization of the curvature of the demand function introduced in section 3 above. In

section 5 we shall further extend the analysis to asymmetric costs.

4For example, the coefficient of relative risk aversion is no greater than one if and only if the inverse
utility is logconcave.
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4.1 Cournot equilibrium

Let there be n Þrms producing a homogeneous product. Let demand be given by D(p),

where D is a strictly decreasing and twice continuously differentiable function on some

interval [0, p], and is zero on [p,∞), and suppose that c < p. Further suppose that D0 < 0

on [0, p]. This latter assumption guarantees that the corresponding inverse demand, P (Q),

is twice continuously differentiable on [0, D(0)], where Q is total output.

For now, let marginal cost be constant at rate c (< p = P (0)) per unit and the same for

all n Þrms. The individual Þrm�s proÞt function is

πi = [P (Q)− c] qi, i = 1, ..., n,

where qi is the individual Þrm�s output. In the subsequent analysis we relate the direct

demand curve to the inverse one to focus on the relevant ρ-curvature properties, but for now

we continue in the standard manner. Since P (0) > c, no Þrm will produce zero output in

equilibrium.5 The standard Þrst-order condition for an interior solution is

P 0(Q)qi + P (Q)− c = 0, i = 1, ..., n, (5)

so that qi is uniquely determined once Q is known, and is therefore the same for all Þrms

(and equal to Q/n). Summing (5) over the n Þrms gives

P 0(Q)Q+ nP (Q) = nc. (6)

The left-hand side exceeds nc forQ = 0, and is strictly negative at the demand curve quantity

intercept, Q = D(0). Hence a solution, Qc, exists because the left-hand side is a continuous

function of Q. This solution is guaranteed to be unique if the left-hand side of (6) is strictly

decreasing in Q, so that a sufficient condition for uniqueness is

P”(Q)Q+ (n+ 1)P 0(Q) < 0. (7)

The second derivative of proÞt is P”(Q)qi + 2P 0(Q). Since qi ≤ Q, the following condition
guarantees that individual proÞt is strictly concave6

P”(Q)Q+ 2P 0(Q) < 0. (8)
5It can only be optimal for Firm i to produce zero if P (Q) ≤ c. But it would then be optimal for the

other Þrms to produce zero too, which yields a contradiction since P (0) > c.
6The second-order condition, P”(Q)qi + 2P 0(Q) < 0, may only fail if P”(Q) > 0. But then, since qi ≤ Q,

(8) ensures it holds.
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It also implies that (7) holds for n ≥ 1.

The strict inequality in (8) is only needed for monopoly since under oligopoly all other

Þrms produce a strictly positive amount at any candidate equilibrium. Note too that (7) is

at its most stringent for monopoly, when it coincides with (8). Therefore both the existence

and the uniqueness of a Cournot equilibrium solution (for any n ≥ 2) are guaranteed if

P”(Q)Q+ 2P 0(Q) ≤ 0. (9)

and uniqueness holds under monopoly when the inequality is strict.7 Deneckere and Kovenock

(1999, Theorem 1) give condition (9) (with a strict inequality) as �the Cournot equilibrium

existence result with the least restrictive conditions on demand known to us.� From Propo-

sition 1 we have the counterpart to (9) as a condition on direct demand (see also Deneckere

and Kovenock, 1999): the (−1)-concavity of D ensures the existence and uniqueness of a

Cournot equilibrium.

It also ensures other properties of the Cournot equilibrium, in particular that a unit

tax cannot increase Þrm proÞts. Seade (1987) noted that several key properties of Cournot

equilibrium depend on the size of the elasticity of the demand curve slope, E = −P”(Q)Q
P 0(Q)

.

SpeciÞcally, he showed that a unit tax would not increase proÞts if E ≥ 2. Writing out this

condition gives P”(Q)Q + 2P 0(Q) ≤ 0, which is exactly condition (9) that was shown in

Proposition 1 to be equivalent to (−1)-concavity. Seade also showed that a unit tax will not

be overshifted (passed on by more than 100%) if E ≥ 1. Writing out this condition gives

P”(Q)Q+P 0(Q) ≤ 0, which is exactly the condition for D to be logconcave (see Proposition

1). It is noteworthy that this condition corresponds to industry demand sloping down no

faster than marginal revenue. Otherwise costs can be passed on more that one-for-one under

monopoly.8

We now follow through with the D-version of the Cournot equilibrium condition. From

(6), the Cournot equilibrium condition can be rewritten as P 0(Q)Q + n[P (Q) − c] = 0. In

7Otherwise (if (9) holds with equality) it is possible that marginal revenue is ßat over a range, and, if
marginal cost is at the exact same level, there is a corresponding range of outputs that maximize proÞts.

8Helpman and Krugman (1989) refer repeatedly to this condition (i.e., comparing the slope of demand
to that of marginal revenue) in their analysis of tariffs.

9



turn, we can write this in terms of the direct demand function as9

n(pc − c) =
−D(pc)

D0(pc)
(10)

This latter version of the Cournot oligopoly pricing rule is important in the analysis below.

In the analysis that follows, we shall restrict ourselves to ρ0 > −1, and the size of the

various surplus bounds will depend on the values of ρ0 and ρ” that bound the curvature of

the demand function. Hence it is useful to understand the implications of different ρ values

in the Cournot model. Consider the effects of an increase in the common marginal cost, c.

From (10) the effect on the Cournot equilibrium price is10

dpc

dc
=

1

1 + 1
n
d
dp

³
D(pc)
D0(pc)

´ .
Since the denominator is positive by the assumption that D is (−1)-concave, the equilibrium

price necessarily rises. It rises by no more than the cost increase if and only if D/D0 has

a positive derivative. Thus a sufficient condition is that D/D0 is increasing, i.e., D(p) is

logconcave. Symmetrically, a cost increase will be passed on by more than 100% if demand

is strictly logconvex. Positive values of ρ0 might be expected for industries in which the latter

property is not empirically validated.11

4.2 Surplus bounds

We now derive the bounds on consumer surplus and deadweight loss. We Þrst prove a

key proposition that restricts where the demand function may lie given that we know the

Cournot equilibrium price and the bounds on the curvature of the demand function ρ” ≥ ρ0.
For a given degree of concavity of demand, a tighter characterization may be obtained by

decreasing ρ00 whereas for a given degree of convexity of demand, a tighter characterization

may be obtained by increasing ρ0.

9This in turn can be rearranged to give a version of the Lerner rule, here that pc−c
pc = − 1

η
1
n , where η is

the elasticity of demand.
10Equivalently, using (6), dp

c

dc = nP 0(Q)
p”(Q)Q+(n+1)p0(Q) .

11Besley and Rosen (1998) Þnd substantial tax overshifting for several commodities, including bananas,
bread, and shampoo. Poterba (1996) cannot reject full pass-on from post-war data, but suggests that
undershifting was more prevalent in pre-war times.
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Proposition 2 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0.Then

D(pc)

·
1 +

ρ”

n

(pc − p)
(pc − c)

¸1/ρ”

≤ D(p) ≤ D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1/ρ0

if neither ρ0 nor ρ” is zero. If one or the other is zero, the appropriate bound is

D(pc) exp

·
1

n

(pc − p)
(pc − c)

¸
.

Proof.Suppose that D is ρ0-concave, with ρ0 > 0 so that

Dρ0
(p) ≤ Dρ0

(pc) + ρ0Dρ0
(pc)

D0(pc)
D(pc)

[p− pc] (11)

which says simply that a concave function lies below its tangent line, and where pc is the

Cournot equilibrium price. Substituting in from the oligopoly equilibrium condition (10)

and raising both sides to the power 1/ρ0 yields:

D(p) ≤ D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1/ρ0

. (12)

Notice that the same expression applies for ρ0 < 0 (since the inequality in (11) is reversed but

then raising both sides to the power 1/ρ0 < 0 then again reverses the inequality). Moreover,

the case ρ0 = 0 is attained by taking the appropriate limit of the right-hand side of (12) to

give

D(p) ≤ D(pc) exp

·
1

n

(pc − p)
(pc − c)

¸
. (13)

The lower bounds involving ρ” follow from similar arguments with the inequalities reversed.

The proposition Þrst uses the restriction that the demand function must lie between two

ρ−linear functions. Given an equilibrium price and industry output, there is an inÞnite set of
ρ−linear functions that go through this point and that could be used to bound demand. The
oligopoly Þrst-order condition ties down the parameters of the bounding ρ−linear demand
function as the tangent to demand at the equilibrium point.

We can now use this result to derive the various surplus bounds. In what follows, PS

denotes producer surplus at the Cournot equilibrium, i.e.,

PS = [pc − c]D(pc), (14)

CS denotes consumer surplus, and DWL stands for deadweight loss.
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Proposition 3 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

n

ρ” + 1
≤ CS

PS
≤ n

ρ0 + 1
.

Proof.Consider Þrst the upper bound. Consumer surplus at a Cournot equilibrium with

price pc is

CS =

Z ∞

pc
D(p)dp

First consider the case ρ0 6= 0. Recall that the upper bound given in Proposition 2 is

D(p) ≤ D(pc)
h
1 + ρ0

n
(pc−p)
(pc−c)

i1/ρ0

. For ρ0 > 0, the expression on the right of this inequality has

an intercept, α, that satisÞes 1 + ρ0
n

(pc−α)
(pc−c) = 0. For ρ0 < 0, this expression goes to zero as p

goes to inÞnity, and deÞne α as inÞnity in this case. Hence we can write

CS ≤
Z α

pc
D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1/ρ0

dp

The assumption that ρ0 > −1 ensures that this integral is well-deÞned. Thus

CS ≤
"
−nD(pc)(pc − c)

1 + ρ0

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1+1/ρ0#α
pc

For ρ0 > 0, the anti-derivative term is zero at p = α by deÞnition, while for ρ0 ∈ (−1, 0), the

anti-derivative term goes to zero as p goes to inÞnity. Hence we have

CS ≤ nPS

1 + ρ0
.

In a similar fashion, for ρ0 = 0 we have

CS ≤
Z ∞

pc
D(pc) exp

·
1

n

pc − p
pc − c

¸
dp = nPS.

Analogous arguments with reversed inequalities yield the lower bound.

The proposition generalizes the monopoly analysis of section 2 to oligopoly. With a

concave demand, ρ0 = 1 and consumer surplus is at most a fraction n/2 of producer surplus.

It reaches this upper bound for a linear function, ρ0 = ρ00 = 1. To see this, note that under

linear demand with unit price and quantity intercepts and with zero marginal cost, Cournot

equilibrium output and price are both equal to 1/(n+1) and so consumer surplus is 1
2

¡
1
n+1

¢2

while proÞt per Þrm is
¡

1
n+1

¢2
.
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The bounds in the proposition may be used to infer how the concavity of demand affects

the ratio of producer surplus to consumer surplus. If we restrict attention to ρ-linear func-

tions, they are immediately comparable in terms of concavity, and a more concave function

(larger ρ) will result in a lower ratio of consumer surplus to producer surplus. The argument

can be extended to functions that are not ρ-linear in the following manner. Consider a ρ-

convex demand function, and compare to another demand function sufficiently more concave

that it is ρ-concave (for the same value of ρ). The proposition then tells us that the ratio of

consumer surplus to producer surplus is smaller for the more concave one. In this sense, con-

sumer surplus is a lower fraction of producer surplus the more concave the demand function.

The argument holds because the bounds are a decreasing function of ρ.12 Similar arguments

will apply in the discussion of our subsequent propositions. With the underlying justiÞcation

given above, we shall henceforth be able to just analyze the comparative static properties by

considering the behavior of the bound expressions with respect to the curvature parameter.

The proposition has interesting implications for the distribution of social surplus under

imperfect competition. With more Þrms, we know that the equilibrium price is lower for

any (−1)-concave demand. Total producer surplus is then lower, while consumer surplus

is higher. The fraction of producer surplus in social surplus falls as competition intensiÞes.

The following corollary provides bounds on this fraction.

Corollary 1 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

ρ0 + 1

n+ ρ0 + 1
≤ PS

CS + PS
≤ ρ” + 1

n+ ρ” + 1
.

The bound expression is an increasing function of the concavity-convexity index ρ. This

means that the producer share in social surplus is larger for more concave demand. The

intuition is best captured by looking at ρ-linear demands. A useful way to parameterize

ρ-linearity is13

D(p) = K[1 + ρ(a− bp)]1/ρ for p ∈ [0, p] (15)

D(p) = 0 for p ≥ p.
12If they were increasing, a higher concavity of demand would have the reverse impact
13This parameterization enables us to pick up loglinearity as a special case and it also rotates demands

through a particular point as we vary ρ.
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where p = 1
ρb

(1 + ρa) for ρ > 0 and p = ∞ otherwise. The parameter values are restricted

in the following manner in order for D to be a demand function: K > 0, b > 0, a > 0

and 1 + ρa ≥ 0. These conditions ensure that demand is positive and strictly decreasing

on [0, p], and that p ≥ 0 for ρ > 0. Keeping K, a, and b constant, we may generate a set

of ρ-linear functions for ρ ∈ [−1
a
,∞). An important property of this parameterization is

that all demand curves pass through the price-quantity pair (a
b
, K), and, at this point, the

elasticity of demand is equal to −a, independently of the value of ρ. For any given n and
c, this property means that we can set a and b judiciously such that the equilibrium price

is always a
b
independently of the value of ρ. Moreover, the equilibrium quantity (K) and

producer surplus (K
¡
a
b
− c¢) are then also independent of demand curvature.

The appropriate choice of demand parameters to keep equilibrium price independent of

curvature is a = bc + 1
n
. This follows from rewriting the oligopoly pricing equation (10) in

Lerner style as p
c−c
pc

= −1
η

1
n
and substituting in the parameter values given.

Since producer surplus remains unchanged, the behavior of its share in social surplus

depends on how consumer surplus varies with ρ. Given that price is held Þxed at a
b
, the

behavior of consumer surplus depends upon how demand changes with ρ for prices exceeding
a
b
. Differentiating the log of the parameterized demand function (15) with respect to ρ gives

1
ρ2

£
x

1+x
− ln(1 + x)

¤
where x = ρ(a − bp). This expression is zero when x = 0, increasing

for negative values of x, and decreasing for positive values. It is therefore always negative.

This means that consumer surplus falls as demand becomes more concave, and so the share

of producer surplus in total surplus rises. Intuitively, think of a demand curve that bows

in more when demand is more concave. This demand curve has been set up to always

go through the same point, which point also concurs with the price equilibrium. Clearly,

consumer surplus falls as demand becomes more bowed in.

Corollary 1 shows that the same ratio of producer surplus to social surplus results for a

given value of ρ no matter how we parameterize the ρ-linear demand. An similar result holds

for the ratio of deadweight loss to producer surplus. This ratio is one measure of the efficiency

of the market. If producer surplus were observable, then the dollar amount of deadweight

loss could be directly inferred if the demand were known to be ρ-linear. If instead the

demand curvature were known to lie between two values, the following proposition indicates

the bounds on the corresponding size of the deadweight loss.
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Proposition 4 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

n+ ρ”

ρ” + 1

µ
1 +

ρ00

n

¶ 1
ρ00
− n

ρ00 + 1
− 1 ≤ DWL

PS
≤ n+ ρ0

ρ0 + 1

µ
1 +

ρ0

n

¶ 1
ρ0
− n

ρ0 + 1
− 1,

if neither ρ0 nor ρ” is zero. If one or the other is zero, the appropriate bound is

ne1/n − n− 1.

Proof.Deadweight loss at a Cournot equilibrium with price pc is

DWL =

Z pc

c

D(p)dp− PS.

Consider Þrst the upper bound. For ρ0 6= 0, applying Proposition 2 gives

DWL ≤
Z pc

c

D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1/ρ0

dp− PS.

Evaluating the expression on the right-hand side,

DWL ≤
"
−nD(pc)(pc − c)

ρ0 + 1

·
1 +

ρ0

n

(pc − p)
(pc − c)

¸1+1/ρ0#pc
c

− PS,

and the upper bound in the proposition follows directly. For ρ0 = 0,

DWL ≤
Z pc

c

D(pc) exp

·
1

n

pc − p
pc − c

¸
dp− PS

and the bound expression follows directly.14 Analogous arguments with the inequalities

reversed establish the lower bounds.

As a point of reference, if ρ0 = 1 (concave demand), then deadweight loss is at most equal

to a fraction 1
2n
of industry proÞts. This bound is attained for linear demand.

Proposition 4 provides bounds on the deadweight loss as a fraction of producer surplus.

These bounds are clearly decreasing in the curvature parameter ρ. To see this note that for

any two values ρ0 and ρ00 such that ρ0 < ρ00, there exists a demand function which is both

ρ0-concave and ρ00-convex. (For example, a ρ-linear decreasing function with ρ ∈ (ρ0, ρ00)).

The proposition implies that for any n the bound expression evaluated at ρ00 must be less

that the bound expression evaluated at ρ0.

14Alternatively, we can look at the limit of the bounds just derived to yield n lim
ρ→0

¡
1 + ρ

n

¢ 1
ρ − n− 1.
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This comparative static property with respect to ρ tells us that the more concave demand,

the lower the fraction of deadweight loss to producer surplus. This property can be visualized

using the same device as we set out after the previous proposition. We can parameterize a

ρ-linear demand in such a way that both the producer surplus and the equilibrium price are

independent of ρ. Then, as we showed before, demand at any price (weakly) falls as demand

becomes more concave. This means that deadweight loss falls as ρ rises. Again, think of a

demand curve that is anchored at the equilibrium price-quantity pair and that moves inward

everywhere else.

Our next result combines the Þndings of the previous two propositions. Let TS = DWL+

CS + PS denote total potential surplus available in the market. For ease of comparison,

we present the results in terms of the ratio of total surplus to producer surplus, bearing in

mind that we are interested in the inverse of this ratio, which tells us how much producers

are able to extract of the total gains available from trade. The results tell us how effective

are producers in extracting surplus from the market. Clearly, the larger the number of

producers, the lower is the equilibrium price and total producer surplus. This means that

the ratio of total surplus to producer surplus increases with n, which is corroborated by the

bounds given in the proposition below.

Proposition 5 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

n+ ρ”

ρ” + 1

µ
1 +

ρ00

n

¶ 1
ρ00
≤ TS

PS
≤ n+ ρ0

ρ0 + 1

µ
1 +

ρ0

n

¶ 1
ρ0

if neither ρ0 nor ρ” is zero. If one or the other is zero, the appropriate bound is ne1/n.

As a point of reference, the linear demand case gives TS/PS = (n+ 1)2/2n. This yields

a ratio of 2 for monopoly, as expected.15

Since the expressions for the bounds is the sum of the expressions given in Propositions

3 and 4, they must be a decreasing function of the curvature parameter, ρ. The intuition

is once again to be seen from the parameterization (15) with the parameters set so as to

keep producer surplus and equilibrium price constant as ρ is varied. Increasing ρ tightens

the demand curve around its anchor price, and in the limit as ρ goes to inÞnity, it becomes

15The monopoly upper bound in general is (1 + ρ)1/ρ, which is decreasing in ρ.
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a rectangular (step) demand where consumers inelastically buy K units up to a price a
b
.

This illustration underlies the fact that the limit of the upper bound in the proposition as

ρ0 goes to inÞnity is 1, and producers extract the full potential surplus. Indeed, the bound

expression may be written as

n+ ρ

ρ+ 1
exp

·
ln(n+ ρ)− lnn

ρ

¸
and ln(n+ρ)

ρ
tends to 0 as ρ tends to inÞnity.

As was the case for the share of producer surplus in social surplus, the fraction of the

Þrst-best total surplus captured by producers is larger if demand is more concave.

The bounds provided by Proposition 4 may be useful in evaluating the value of dead-

weight loss when proÞt measures are available. They are less useful if we wish to study how

market inefficiency is affected by demand curvature. Standard welfare analysis would usually

relate deadweight loss to the total potential surplus that may be generated by the market.

Equivalently we may consider the ratio of the total potential surplus to the social surplus

generated by the market equilibrium. Using Corollary 1 and Proposition 5 we have

(n+ ρ”) (ρ0 + 1)

(ρ” + 1)(n+ ρ0 + 1)

µ
1 +

ρ00

n

¶ 1
ρ00
≤ TS

PS + CS
≤ (n+ ρ0) (ρ00 + 1)

(ρ0 + 1)(n+ ρ00 + 1)

µ
1 +

ρ0

n

¶ 1
ρ0

(16)

Note that the lower bound is increasing in ρ0 while the upper bound is increasing in ρ00,

corresponding to tighter and looser bounds respectively. Further insight can be gained by

considering ρ-linear functions for which ρ” = ρ0 = ρ. We can then determine the impact of

changing demand curvature on the relative deadweight loss, DWL
TS

(the terminology follows Ti-

role, 1988). For ρ-linear demand, from (16), we have TS
PS+CS

= TS
TS−DWL

= n+ρ
(n+ρ+1)

¡
1 + ρ

n

¢ 1
ρ ,

so that relative deadweight loss moves the same way as TS
PS+CS

. For the special case of

isoelastic demands (see Tirole, 1998, Exercise 1.4), it can be readily shown that the more

elastic the demand, the larger the relative deadweight loss under monopoly (given an isoe-

lastic demand). In our setting, this translates to relative deadweight loss being increasing

for ρ ∈ (−1, 0). Clearly though the deadweight loss disappears as we approach the limit of

rectangular demand of our earlier parameterization of ρ-linear demand, suggesting that an

17



increase in ρ necessarily decreases relative deadweight loss for large values of ρ.16 The next

proposition clariÞes the behavior of relative deadweight loss as a function of ρ.

Proposition 6 Let D be ρ-linear. Then TS
PS+CS

= n+ρ
(n+ρ+1)

¡
1 + ρ

n

¢ 1
ρ is a quasiconcave func-

tion of ρ that is increasing for ρ ∈ (−1, 0) and decreasing for ρ large enough.

Proof.See Appendix.

The intuition follows out earlier parameterization of ρ-linear demand, whereby we hold

producer surplus Þxed as we increase ρ. For low ρ, consumer surplus is large relative to

deadweight loss, and bowing in the demand function reduces consumer surplus more than

it reduces deadweight loss. This increases relative deadweight loss. For high ρ, the opposite

pattern constitutes the starting point (low consumer surplus and high deadweight loss). Then

bowing in the demand function reduces deadweight loss by more than it reduces consumer

surplus, causing relative deadweight loss to fall.

5 Surplus bounds for asymmetric Cournot oligopoly

Empirical studies need to deal with observed asymmetries in market shares, and Cournot-

based studies typically assume marginal costs differ across Þrms. We now turn to the Cournot

oligopoly equilibrium with different costs, which generate asymmetric equilibrium market

shares. Label Þrms so that c1 ≤ c2 ≤ ... ≤ cn and assume that all Þrms are active in

equilibrium (cn < pc in equilibrium suffices). The standard Þrst-order conditions are

P 0(Q)qi + P (Q) = ci i = 1, ..., n. (17)

Summing up these conditions and dividing by the number of Þrms yields a modiÞcation of

(6):

P 0(Q)q̄ + P (Q) = c̄. (18)

16As we pointed out before, as ρ tends to ∞, demand becomes rectangular and producers capture all the
potential social surplus in the market. Thus market inefficiency vanishes.
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where q̄ = Q/n is average output and c̄ = 1
n

Pn
i=1 ci is mean unit production cost. Equations

(17) and (18) imply the property

qi > q̄ ⇔ ci < c̄. (19)

which is useful below: a Þrm produces more than the average output if and only if its cost

is below the mean level. Using similar arguments as in the previous section, the average

relationship in (18) is also useful in deriving the generalization of (10), which yields the

following relation between mark-up over mean cost to the key demand/derivative ratio:

n(pc − c̄) =
−D(pc)

D0(pc)
(20)

With this result in hand we can now parallel the previous analysis. First note that Proposi-

tion 2 is modiÞed simply by replacing c by c̄. It is now useful below to deÞne the �mean-cost�

industry proÞtMPS = (pc − c̄)Q which is the proÞt that would be earned in the industry if
the same total output, Q, were produced, and each Þrm had the same (mean) cost, c̄. Clearly

total producer surplus, PS equals MPS if all Þrms have the same cost. The extension of

Proposition 3 is straightforwardly shown simply by replacing c by c̄.

Proposition 7 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

n

ρ” + 1
≤ CS

MPS
≤ n

ρ0 + 1
.

Our measure of deadweight loss is built on the benchmark of the cost of the most efficient

Þrm (1).17 At the optimal allocation, this Þrm should serve the whole market at unit cost,

c1. The deadweight loss at the equilibrium allocation is thus the lost consumer surplus

from having the equilibrium price pc exceed c1, from which we subtract producer surplus,

PS (which is the part of that lost surplus captured by Þrms). Hence the deadweight loss

expression is as before except the lower limit on the integral is now c1 instead of c.

Proposition 8 Let D be ρ0-concave and ρ”-convex, with ρ” ≥ ρ0 > −1. Then

n

ρ” + 1

µ
1 + ρ00

q1

Q

¶1+ 1
ρ00
− n

ρ00 + 1
− PS

MPS
≤ DWL

MPS
≤ n

ρ0 + 1

µ
1 + ρ0

q1

Q

¶1+ 1
ρ0
− n

ρ0 + 1
− PS

MPS

17See also Daskin (1991).
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if neither ρ0 nor ρ” is zero. If one or the other is zero, the appropriate bound is

neq1/Q − n− PS

MPS
.

Proof.Deadweight loss at a Cournot equilibrium with price pc is

DWL =

Z pc

c1

D(p)dp− PS.

Consider Þrst the upper bound. For ρ0 6= 0, applying the boundD(p) ≤ D(pc)
h
1 + ρ0

n
(pc−p)
(pc−c̄)

i1/ρ0

gives

DWL ≤
Z pc

c1

D(pc)

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1/ρ0

dp− PS.

Evaluating the expression on the right-hand side,

DWL ≤
"
−nD(pc)(pc − c̄)

ρ0 + 1

·
1 +

ρ0

n

(pc − p)
(pc − c̄)

¸1+1/ρ0#pc
c1

− PS,

and the upper bound in the Proposition follows directly after noting that pc−c1

n(pc−c̄) = q1

Q
. A

similar argument holds for ρ0 = 0 using

DWL ≤
Z pc

c1

D(pc) exp

·
1

n

pc − p
pc − c̄

¸
dp− PS.

The lower bounds are established with analogous arguments with the inequalities reversed.

The bounds in the proposition involve the output share of the largest Þrm, and two

industry proÞt variables, one actual (PS) and one constructed (MPS) which are equal for

a symmetric Cournot equilibrium. We can derive upper surplus bounds solely in terms of ρ0

and (potentially) observable quantities, producer surplus, market share of the largest Þrm,

and the number of Þrms. This is facilitated by the following Lemma.

Lemma 1 Consider a Cournot oligopoly with n Þrms producing at constant (but different)

marginal cost. Then mean-cost producer surplus is no larger than the true producer surplus:

MPS ≤ PS.
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Proof.It suffices to show that D(pc)[pc − c̄] ≤ Pn
i=1[p

c − ci]qi, or
Pn

i=1 qi[c̄ − ci] ≥ 0.

Subtracting
Pn

i=1 q̄[c̄− ci] (= 0) from the L.H.S. of the last inequality yields
Pn

i=1[qi− q̄][c̄−
ci] ≥ 0, which is necessarily true by property (19).

Given this Lemma, if we replace MPS by PS in the upper bounds of the previous two

propositions, we obtain the desired upper bounds on deadweight loss. Tighter bounds can

be derived if one has access to data on demand elasticity and Þrms� revenues. These bounds

are given in the proof below, while the proposition gives looser bounds in terms of aggregate

revenues. Let TIR denote total industry revenues (pcQ), and recall η is the price elasticity

of demand.

Proposition 9 Consider a Cournot oligopoly with n Þrms producing at constant (but dif-

ferent) marginal cost. Let D be ρ0-concave with ρ0 > −1.Then,

CS ≤ TIR

|η|
·

1

ρ0 + 1

¸
For ρ0 6= 0,

DWL ≤ TIR

|η|

"
1

ρ0 + 1

µ
1 + ρ0

q1

Q

¶1+ 1
ρ0
− 1

ρ0 + 1
− 1

n

#
while for ρ0 = 0,

DWL ≤ TIR

|η|
·
eq1/Q − 1− 1

n

¸
.

Proof.First note that the mean-cost producer surplus (MPS) can be written as (using

(20))

D(pc)[pc − c̄] = −D(pc)

D0(pc)
Q

n
=
TIR

n|η| .

Producer surplus can be written in a like way by noting that πi = −P 0(Q)q2
i = si

TRi
|η| (using

(17)) where now si = qi/Q = TRi/TIR is Þrm i�s market share, and TRi is its sales revenue.

Hence

PS =
1

TIR|η|
nX
i=1

TR2
i .

Replacing these expressions, along with qi/Q = TRi/TIR in the upper bounds in Proposi-

tions 7 and 8 gives the following.
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CS ≤ TIR

|η|
·

1

ρ0 + 1

¸
For ρ0 6= 0,

DWL ≤ TIR

|η|

"
1

ρ0 + 1

µ
1 + ρ0

q1

Q

¶1+ 1
ρ0
− 1

ρ0 + 1

#
−

Pn
i=1 TR

2
i

|η|TIR ,

while for ρ0 = 0,

DWL ≤ TIR

|η|
£
eq1/Q − 1

¤− Pn
i=1 TR

2
i

|η|TIR .

The bounds on DWL in the Proposition are then given by noting that TIR2 ≤ nPn
i=1 TR

2
i ,

which follows from application of the Cauchy-Schwartz inequality applied to the vectors

(1, ..., 1) and (TR1, ..., TRn).

6 Conclusions

We have presented a set of surplus bounds under Cournot competition. Different surpluses

are important in different contexts. In measuring monopoly deadweight loss, or the damage

inßicted by market power, our results on bounds on deadweight loss as a fraction of industry

proÞts mean that losses can be inferred from observation of industry proÞts and tight demand

estimates.

Whether a monopoly Þrm enters a market depends on its proÞt. However, the socially

optimal entry decision depends on total surplus generated. When the two are close, a Þrm�s

incentives are aligned with the optimum. Thus, when demand is very concave (ρ0 is high),

we should expect close to optimal entry behavior, but for a very convex demand (ρ00 is low)

much of the surplus generated by a Þrm remains uncaptured and so entry decisions may be

far from optimal.

These surplus comparisons are also important under oligopoly. An additional entrant

joins the market if it garners a positive proÞt. The optimal decision depends on the in-

cremental total surplus. An extension of the present research is to quantify the severity in

welfare terms of the over-entry problem identiÞed by Mankiw and Whinston (1986). For

example, does it become more or less severe as ρ0 increases or ρ00 decreases? For a monopoly,

private and social incentives become aligned when ρ0 is high enough, so that the question
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is whether this logic extends to oligopoly.18 The oligopoly case presents some caveats; in

particular, the business stealing effect. When ρ0 is large (demand is very concave) then Þrms

succeed in capturing almost all of the total surplus. An additional Þrm will not reduce price

much and so its social value is small. Nevertheless, it may still earn substantial proÞt by

simply attracting customers from rival Þrms. This suggests that overentry may indeed be a

serious problem for ρ0 large, even though the analysis for a Þxed number of Þrms suggests

that this case involves little deadweight loss. This discussion underscores the point that

merely considering the size of deadweight loss, while taking the number of Þrms as Þxed,

may overlook substantial inefficiencies. Therefore one must be very careful in interpreting

the welfare results for a Þxed number of Þrms.

In this paper we have used generalized characterizations of demand curvature taking ad-

vantage of the fact that a demand function is both ρ0-concave and ρ00convex on its support

for some ρ0 and ρ00 such that ρ0 ≤ ρ00. This property is due to the fact that demand is

both strictly positive and monotone. This methodology could be extended to study other

strictly positive and monotone functions whose curvature has important economic implica-

tions. Two examples are cost functions, for which curvature measures returns to scale, and

utility functions under risk where curvature measures risk aversion.
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7 Appendix

7.1 Proof of Proposition 6.

For a ρ-linear function for which ρ” = ρ0 = ρ, TS
PS+CS

= n+ρ
(n+ρ+1)

¡
1 + ρ

n

¢ 1
ρ , and we wish

to determine the effects of changing ρ on this expression. First take the logarithm of the

expression to yield:

S(ρ) = ln(n+ ρ)− ln(n+ ρ+ 1) +
1

ρ
ln

³
1 +

ρ

n

´
.

The derivative of S is

S 0(ρ) =
1

ρ2

1

(n+ ρ)(n+ ρ+ 1)

n
ρ(n+ 2ρ+ 1)− (n+ ρ)(n+ ρ+ 1) ln

³
1 +

ρ

n

´o
. (21)

Except for possibly at ρ = 0, this expression has the sign of the term in curly brackets

(since ρ > −1 and n ≥ 1), so deÞne this term as T (ρ),

T (ρ) = ρ(n+ 2ρ+ 1)− (n+ ρ)(n+ ρ+ 1) ln
³

1 +
ρ

n

´
, (22)

which is a continuous function of ρ. S is increasing when T is positive, and decreasing when

T is negative. We shall show that T is Þrst positive and then negative, so that S, and

therefore the bound expression, is quasiconcave. The structure of the remainder of the proof

is as follows. We Þrst show that (i) T is negative for ρ large enough. We next show that

(ii) for n ≥ 2, T has a local minimum at ρ = 0, at which point T is zero. Finally, we show

in (iii) that the second derivative of T is decreasing in ρ for n ≥ 2,. Coupled with (ii), this

proves that T must be positive for ρ < 0: if it were negative at some ρ < 0 then it would

have to be concave at some point in order to later have a local minimum at ρ = 0, but this

contradicts (iii). Finally, from (i), T is negative for ρ large enough, but, from (ii) it has a

local minimum at ρ = 0. To become negative, it must turn from convex to concave, but by

(iii) it cannot become convex again after it has become negative for the Þrst time, and so

there is a unique value of ρ > 0 for which T crosses the line T = 0. The case n = 1 is also

Þlled in below.

(i) Suppose that ρ ≥ (e2 − 1)n, so that ln
¡
1 + ρ

n

¢ ≥ 2. From (22), T (ρ) ≤ ρ(n + 2ρ +

1)− 2(n+ ρ)(n+ ρ+ 1) < 0.

26



(ii) Clearly T (0) = 0. Now, T 0(ρ) = 3ρ − (2n + 2ρ + 1) ln
¡
1 + ρ

n

¢
, and so T 0(0) = 0.

Furthermore, T 00(ρ) = (n+ρ−1)
(n+ρ)

− 2 ln
¡
1 + ρ

n

¢
, so T 00(0) > 0 for n > 1, so that T has a local

minimum at ρ = 0. If n = 1, then T 00(0) = 0, and T has an inßection point at ρ = 0.

(iii) T 000(ρ) = 1
(n+ρ)2 − 2

(n+ρ)
, which is negative (as desired) for n ≥ 2.

The case n = 1 needs a little more elaboration. T 000(ρ) has the sign of −1− 2ρ, so that

T 00 is increasing for ρ ∈ (−1,−1
2
) and it is decreasing for ρ > −1

2
. Since lim

ρ→−1
T (ρ) = 0,

lim
ρ→−1

T 0(ρ) = ∞, and lim
ρ→−1

T 00(ρ) = ∞, T (ρ) is positive, increasing, and concave at Þrst: it

then becomes convex before falling to 0 at ρ = 0, whereafter it is concave and so falling since

this is an inßection point. It is thus positive for ρ ∈ (−1, 0) and negative for ρ > 0.
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