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Abstract

We present a model of charity auctions in which all bidders receive a benefit from the host

charity raising revenue. Bidding behavior reflects two conflicting incentives: bids may be

inflated because of private benefits from charitable giving, or bids could be depressed by the

public goods nature of auction revenue. We study first- and second-price auctions and all-

pay auctions. Revenue equivalence is unbalanced whenever a bidder benefits from the charity

collecting another bidder’s money. All-pay and second-price auctions have higher expected

revenue than first-price auctions. The revenue ranking of all-pay and second-price auctions

depends on parameter values, but as the number of bidders becomes large the all-pay auction

is more lucrative than either single-price format.
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1 Introduction

In a typical auction the only bidder who benefits from a sale is the winner, and any payments that

bidders make to the auctioneer are perceived (by their sources) as pure losses. Charity auctions,

in which a charitable organization sells an item in order to raise revenue for its cause, are different.

When an organization like the American Cancer Society holds an auction, it is reasonable to assume

that the attending bidders have two objectives: to win items that they value and to support the

host charity. If this is the case, then each dollar raised by the charity provides a benefit to

auction participants. Auction revenue may be interpreted as an (imperfectly) public good that is

beneficial to all bidders regardless of the revenue’s source. This raises interesting questions about

equilibrium bidding strategies in charity auctions. Do bids rise because auction participants view

their payments as “subsidized” by charitable sentiment, or do they instead fall because there are

benefits from losing a charity auction? What auction format raises the most revenue for organizers

of charity auctions?

Charity auctions are a common (and lucrative) way of raising funds. One of the longest-running

auctions in the world, the annual wine sale hosted by the Hospices de Beaune, is a charity auction.

The 2000 sale, the 140th auction organized by the Hospices, benefitted Burgundy-area charitable

groups and raised almost $5 million in revenue.1 An American counterpart of this auction is the

annual Napa Valley Wine Auction, which was held for the 20th time in 2000 and generated $9.5

million in revenue. Musician Eric Clapton conducted a charity auction in 1999 that offered an

ironic complement to these wine sales. Clapton, who struggled with alcohol and drug addiction

during the 1970s, sold 100 of his guitars and raised $5 million for his substance abuse treatment

facility on the Caribbean island of Antigua. Charity auctions are frequently used to raise funds for

schools but these auctions usually do not collect extraordinary amounts of revenue. An exception

is documented by David Kaplan [1999] in The Silicon Boys and Their Valley of Dreams. Woodside,

California is a suburb of San Francisco that has a large population of computer industry multi-

millionaires. When the region’s public elementary school held a charity auction in 1998 the prizes

included a week at NASA’s Space Camp and a week-long cruise on Oracle founder Larry Ellison’s

yacht; over $400,000 was raised in a single night.

We present a model of charity auctions in which risk-neutral bidders have independently drawn
1In recent years the identity of the charity receiving assistance has changed with each auction. The Hospices’

mission is to aid organizations that benefit the indigent and sick.
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private values for a single auctioned item and each bidder receives a benefit from the charity’s

revenue. We permit bidders to benefit more strongly from their own payments than from those

of other bidders, but the model is symmetric in all other respects. Three selling formats are

considered: first- and second-price auctions and all-pay auctions.2

We find that bidders in a first-price charity auction are more aggressive than in a standard

(non-charity) auction because of the benefit they receive from their own payments to the charity

when they win. A similar effect exists in second-price charity auctions, plus there is the possibility

that a bidder submits the second-highest tender and determines the payment of the winner. This

additional incentive to increase one’s bid in a second-price charity auction unbalances the rev-

enue equivalence result first presented by Vickrey [1961] and later generalized by Myerson [1981].

Second-price charity auctions are more lucrative than first-price charity auctions.

When a bidder in a first- or second-price auction increases her bid, she decreases the probability

that another bidder will win the auction and make a payment to the auctioneer. In a charity auction

other bidders’ payments to the auctioneer are valuable, and this may depress bids in single-price

auctions. All-pay charity auctions do not have this characteristic; increasing one’s bid in an all-pay

auction does not affect the chance that other bidders will pay the auctioneer. We demonstrate that

all-pay auctions have higher expected revenue than both single-price auctions when the number of

bidders is large. The all-pay auction is always more lucrative than a first-price auction, but it is

not possible to provide a general revenue ranking for all-pay and second-price auctions.

Although to our knowledge charity auctions have not been considered previously in the litera-

ture, there are several other auction settings in which transfers to losing bidders influence bidding

incentives. “Knockout” auctions that determine allocations among members of a cartel typically

include a payment to auction participants who do not win the knockout auction. Graham and

Marshall [1987] and McAfee and McMillan [1992] characterize optimal mechanisms for allocating

auction profits among members of a cartel.3 Engelbrecht-Wiggans [1994] studies auctions with

benefits to auction participants that are proportional to the winning bid. The motivating example
2 In an all-pay auction, all bidders pay their bids and the person with the highest bid receives the item for sale.
3Both papers include payments to losing participants in a knockout auction, but the mechanisms do not provide

each bidder with a positive benefit that is proportional to the amount paid (as in a charity auction). In Graham and

Marshall [1987] all n participants in the knockout auction receive the same payment before bids are submitted in the

knockout round. In McAfee and McMillan [1992] the losers of the knockout auction each get 1
n−1 of the difference

between the winner’s payment and a reservation price; the winner’s utility is the difference between her valuation

and her payment.
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used by Engelbrecht-Wiggans is an estate auction in which bidders (the children of the deceased)

assign ownership of a family farm to the highest bidder, but all bidders collect an equal share of the

auction revenue. As in a charity auction, bidders have an incentive to inflate their tenders in order

to improve their return from losing the estate auction. We extend Engelbrecht-Wiggans’ model

by allowing a more general structure of benefits to auction participants and by considering all-pay

auctions in addition to first- and second-price formats.4 Another type of auction in which a bidder

may receive a payment is a corporate takeover, in which a bidder with partial ownership of the firm

for sale (a “toehold”) receives a portion of the winner’s payment. Burkart [1995] and Singh [1998]

consider the effect of toeholds on bidding in a private-value auction; Bulow, Huang, and Klemperer

[1999] demonstrate that bidders’ incentives and sale prices in common-value takeover auctions can

be substantially different from the private-value case.

Jehiel, Moldovanu, and Stacchetti [1996, 1999] consider situations in which an auction winner

imposes an externality on losing bidders. Auction participants hold private information regarding

their own value of the object for sale and their valuations of auction outcomes in which they do

not receive the object. Payments to a charity may also be interpreted as affecting all bidders

with a positive externality, but the magnitudes of the externalities studied by Jehiel, Moldovanu,

and Stacchetti are unaffected by bidding intensity. Budget-constrained bidders may also impose

externalities on each other when participating in a sequence of auctions. Bidding is aggressive in

an early auction because a high price weakens the ability of the early winner to succeed in later

auctions. Pitchik and Schotter [1988] and Benoît and Krishna [2001] study this phenomenon for

the case of common values over the auctioned items and complete information about valuations

and budgets.

The description of auction revenue as a public good invites comparison between the present

research and other studies of funding public goods. When contributions to a pure public good

are voluntary the public good generally will be under-provided and contributions from one source

“crowd out” other donations dollar-for-dollar. Our model of charity auctions ensures that bidders

always have a private gain from winning (and therefore participating in) the contest, but bidding

may become less aggressive as the public goods effect from others’ payments becomes more valuable.

Personal gains from donations to a public good have been considered by Andreoni [1989] and
4During the course of this research we found that Engelbrecht-Wiggans’ comparison of expected revenue from

first- and second-price auctions applies only to cases in which there are two bidders. In light of this, our analysis of

revenue from single-price auctions with more than two participants is also novel.
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Morgan [2000]. Andreoni describes giving to a public good when donors receive an egotistical

warm glow from their own contributions. Like Andreoni, we find that a warm glow can increase

revenue. Morgan studies the use of lotteries to raise revenue for a public good. As in an auction,

all lottery participants have a chance to win a prize for personal gain, and the combination of

private and public gains from ticket purchases increases revenue relative to the case with voluntary

donations directly to the public good. A key difference between Morgan’s lottery model and our

charity auction model is that all of the lottery contestants value the prize equally, so there are no

(in)efficiency consequences of an allocation mechanism that is random.5

2 Preliminaries

Suppose a charitable organization possesses one item to sell at an auction, and all of the revenue

from this sale will support the charity’s mission. The organization considers three sealed-bid

auction formats: first-price, second-price, and all-pay. For analytic simplicity we assume that the

charity does not implement revenue-enhancing strategies like minimum bids and entry fees.

There are n ≥ 2 risk-neutral bidders who draw independently from the probability distribution

F with support [t, t] to determine their private valuation for the auctioned item. An individual’s

taste, t, for the item is private information, but distribution F is common knowledge. Let F be

differentiable on the interior of its support with positive density f .

Individual surplus from the charity auction has both private and philanthropic components.

As in the standard independent private values auction model, an individual receives surplus from

private consumption when the object is purchased at a price less than her valuation. Additional

surplus comes to the individual through the host charity collecting revenue for a good cause.

Moreover, we follow Andreoni [1989] and allow for the possibility of a warm glow to an individual

— the additional satisfaction that the money going to the charitable organization is her own.

We specify that the psychological return to person i from the host charity collecting one dollar

from i is θ, while the return to i from another bidder’s dollar being transferred to the charity is λ.

To allow for a warm glow from charitable giving, we specify that the parameters θ and λ satisfy

0 ≤ λ ≤ θ < 1. The parameter θ is restricted to be less than one because values of θ ≥ 1 render
the idea of a charity auction moot since i wishes to transfer all of her money to the charity. If

5The lottery contestant who purchases the most tickets has the best chance of winning the prize, but other

contestants may win instead.
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θ = λ, the psychological return from participating in the auction is purely altruistic; individual i’s

satisfaction from seeing money go to a favored cause is independent of the source of the revenue.

When θ > λ, there is an additional, egotistical benefit to person i when it is her own money that

goes to the charity. We will find it convenient later to denote this warm glow by ∆ = θ − λ.

3 Bidding in a Charity Auction

We derive equilibrium bid functions for the three auction formats listed in the previous section. The

solution technique is to consider the signalling problem of person i given that all other participants

in the auction use the same strictly increasing function B to map their own valuations of the

auctioned item into bids.6 We assume that B is strictly increasing and differentiable on the

interval (t, t). Bidder i is not obliged to implicitly announce her true type, t. She may select a

valuation s from [t, t] and submit a bid of B(s). There is no need for i to consider bids outside of

the range [B(t), B(t)]; doing so can never help i and may hurt her.7 In a symmetric equilibrium i

chooses to select the bid B(t) using B and her own type t.

3.1 First-Price Auctions

In a first-price auction bidder i’s return depends on her type, her bid, and the highest bid made by

other bidders. Let x be the highest of the (n− 1) other bidders’ valuations of the item being sold;

the distribution of x is F (x)n−1. If B1 is the bid function used by the other bidders in a first-price

auction, the highest bid made by the others is B1(x). Suppose bidder i imitates a person with

type s and bids B1(s). We divide the support of x into two regions, above and below s. If s > x

bidder i pays B1(s) to the charity and receives the auctioned item (worth t to i) and a psychological

return of θB1(s). When s < x bidder i receives λ times the payment made by the auction winner
6Alternatively, we could describe i’s problem as one of choosing an arbitrary bid, bi, while the other bidders use

the function B. This would not affect our results on equilibrium bidding strategies or revenue rankings. We adopt

the signalling approach for notational ease.
7 In all three auction formats a bid above B(t) cannot improve i’s probability of victory (which is one at B(t)) but

may result in an unnecessarily high payment to the auctioneer. A bid of B(t) or below implies that i will lose the

auction with certainty. The reasons why bids below B(t) (when feasible) do not make i better off depend on the

rules of each auction; this should be apparent to the reader after the equilibrium bid functions are derived in Section

3.
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to the charity. In total, the expected return to i from imitating a bidder of type s is:

π(s|t, n) =
Z s

t
[t− (1− θ)B1(s)]dF (x)

n−1 + λ

Z t

s
B1(x)dF (x)

n−1. (1)

To further consider the effect of θ and λ on bidding, divide (1) into the sum of a bidder’s expected

return from a standard (non-charity) auction and a payoff function, Φ1, that includes all charity-

related effects:

π(s|t, n) = F (s)n−1[t−B1(s)] +Φ1(s),

with Φ1(s) = θF (s)n−1B1(s) + λ

Z t

s
B1(x)dF (x)

n−1.

If bidder i selects a value of s while ignoring the terms collected in Φ1, she faces the standard trade-

off between increasing her chance of winning the auction and increasing her expected payment.

The terms in Φ1 provide i with an additional incentive to increase her choice of s, given that other

bidders use the fixed bid function B1. When the bid function is strictly increasing and θ ≥ λ, Φ1

is increasing in a bidder’s choice of s:

Φ01(s) = θB01(s)F (s)
n−1 + (θ − λ)B1(s)

dF (s)n−1

ds
.

If a bidder increases her choice of s by a small amount, she directly benefits by θ times the increase

in her expected payment. Additionally, the increased chance of i’s own payment upon winning the

auction is at least as valuable as the reduced probability of another bidder’s payment because of

the warm glow (θ ≥ λ) from transfers to the charity. Together, these points suggest that bidding

in a first-price charity auction is more aggressive than in an auction with Φ1 = 0.8

In a symmetric equilibrium, an incentive-compatible bidding strategy implies that it is optimal

for i to select s = t (her own type). Regardless of auction format, the first-order condition for an

incentive-compatible selection of s is

∂π(s|t, n)
∂s

¯̄̄̄
s=t

= 0. (2)

When (2) is applied to the expected return given in (1) for a first-price charity auction, we obtain

[t− (1− θ + λ)B1(t)]
dF (t)n−1

dt
− (1− θ)B01(t)F (t)

n−1 = 0. (3)
8This does not prove that bidding in a charity auction is more aggressive than in a standard auction. We have

demonstrated that the charity component of this auction leads one bidder to increase her selected value of s, holding

fixed the bidding strategies of the other auction participants. We still must verify that bidding is more aggressive in

equilibrium.
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Recall that ∆ = θ − λ, and rearrange (3) to obtain the differential equation

B01(t) +B1(t)
µ
1−∆
1− θ

¶ d
dt

£
F (t)n−1

¤
F (t)n−1

=
t

1− θ

d
dt

£
F (t)n−1

¤
F (t)n−1

. (4)

The term (n−1)(1−∆)
(1−θ) would appear frequently in the discussion below, so it is replaced by α for

simplicity. To solve the differential equation (4) we multiply each side of the expression by the

integrating factor F (t)α to obtain

d

dt
[B1(t)F (t)

α] =
t

1−∆
d

dt
[F (t)α].

Integrating from t to t (along with the boundary condition B1(t)F (t)α = 0) yields the bid function

for a first-price charity auction:

B1(t) =
1

1−∆
·
t−

Z t

t

µ
F (x)

F (t)

¶α

dx

¸
. (5)

The derivation above establishes that this function is an equilibrium bidding rule if it is increasing in

t, differentiable, and a maximal solution to the bidder’s signaling problem rather than a minimum.

We verify that B1 (and all other bid functions derived below) satisfies these conditions in the

appendix. The derivation also establishes that B1 is the unique equilibrium among all possible

symmetric, increasing, and differentiable bidding rules for bidders with valuations in (t, t]. The

strategy for a bidder with the lowest valuation t is indeterminate — any bid between 0 and t
1−∆

is optimal for a person with the valuation t. A similar indeterminacy at boundary points of t’s

support can occur in the second-price charity auction too. However, these issues do not affect the

expected revenue of either auction because the indeterminacy is restricted to subsets of the support

with zero probability measure.

If θ and λ are zero, B1 becomes the bid function for a first-price auction with independent

private values and no charity component:

B1(t) = t−
Z t

t

µ
F (x)

F (t)

¶n−1
dx (when θ,λ = 0).

When there is only an egotistical return from charitable giving (θ > 0, λ = 0), the parameter θ

behaves exactly like a subsidy to i’s payment. The bidding function used in a standard auction is

simply inflated through multiplication by (1−θ)−1. The other borderline case in a charity auction
is that of purely altruistic behavior (θ = λ > 0). In this situation, the bid function B1(t) leads to

higher bids than in the non-charity case because bidder i behaves as if she has more than (n− 1)
competitors for the auctioned item. That is, if we solvem−1 = n−1

1−θ for m, we can say that bidders
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behave as if there are m = n−θ
1−θ potential buyers in a standard auction rather than n.

9 When θ = λ

and both parameters approach one, a fixed, finite number of bidders in a charity auction behave

as if they are in a standard auction with an infinite number of bidders.

Intuition suggests that the bidding function B1(t) may decrease as the parameter λ increases.

This “crowding-out” effect reduces one’s own bidding when the attractiveness of successful bids by

others increases. The effect of an increase in λ on B1 is

∂B1(t)

∂λ
= − 1

(1−∆)2
½
t−

Z t

t

·
1− α log

µ
F (x)

F (t)

¶¸µ
F (x)

F (t)

¶α

dx

¾
. (6)

Although the sign of (6) may appear to be ambiguous because the term in braces has both positive

and negative components, we find that (6) is always negative. First, notice that

∂B1(t)

∂λ

¯̄̄̄
t=t

= − t

(1−∆)2 ≤ 0.

Next, note that the cross-partial derivative

∂2B1(t)

∂λ∂t
=

µ
α

1−∆
¶2 Z t

t
log

µ
F (x)

F (t)

¶µ
F (x)

F (t)

¶α f(t)

F (t)
dx.

is always negative. Since ∂B1(t)
∂λ is negative at its lower boundary and decreasing in t, it must be

the case that ∂B1(t)
∂λ is negative for all t. There is crowding-out in first price charity auctions when

the payments of bidders other than i yield a positive benefit to i.

3.2 Second-Price Auctions

In a second-price charity auction the payoff to bidder i depends on her type, her bid, and the highest

and second-highest bids submitted by the other participants in the auction. Suppose x is a random

variable that may represent the highest or second-highest of the other (n− 1) bidders’ valuations.
Again, if x is the highest type its distribution is F (x)n−1. If x represents the second-highest type

it has the distribution {(n− 1)F (x)n−2[1− F (x)] + F (x)n−1}. All bidders use the function B2 to
map their (implicitly announced) tastes for the auctioned item into bids. The possible outcomes

for i in a second-price charity auction can be divided into three cases. First, i wins the auction

because she signals a type, s, that is greater than the highest (and second-highest) types of the

(n− 1) other bidders. This case results in i paying the highest bid submitted by the other auction
participants. In return for her payment i receives the prize (worth t) and a psychological benefit

9When θ = λ, the first-order condition (3) can be multiplied by Fm−n to obtain the optimality condition for

bidding in a non-charity auction with n−θ
1−θ bidders.
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of θ for each dollar she pays the auctioneer. Second, with probability (n − 1)F (s)n−2[1 − F (s)]
person i submits the second-highest bid. Since the winner of the auction pays the second-highest

bid, i receives a return of λB2(s) on auction revenue equal to B2(s). Third, the type selected by i

is smaller than the first- and second-highest types of the other (n−1) bidders. The auction winner
pays the second-highest bid and i’s return is λ for each dollar of auction revenue. Combining these

three cases, we write the expected return to bidder i with type t from imitating a person of type s

as:

π(s|t, n) =

Z s

t
[t− (1− θ)B2(x)]dF (x)

n−1 + λ(n− 1)F (s)n−2[1− F (s)]B2(s)

+λ

Z t

s
B2(x)(n− 1)(n− 2)F (x)n−3[1− F (x)]dF (x).

Again, we split i’s expected return from the auction into a non-charity component and Φ2(s), the

bidder’s charity-related surplus when she mimics a person with valuation s:

π(s|t, n) =

Z s

t
[t−B2(x)]dF (x)n−1 +Φ2(s),

with Φ2(s) = θ

Z s

t
B2(x)dF (x)

n−1 + λ(n− 1)F (s)n−2[1− F (s)]B2(s)

+λ

Z t

s
B2(x)(n− 1)(n− 2)F (x)n−3[1− F (x)]dF (x).

The term Φ2 is increasing in s, suggesting that participants in a charity auction bid more aggres-

sively than in a standard auction:

Φ02(s) = λ(n− 1)F (s)n−2[1− F (s)]B02(s) + (θ − λ)B2(s)
dF (s)n−1

ds
.

The first term in Φ02 is the increase in expected surplus from placing second with slightly higher bid.

The second term accounts for the increased probability of i winning the auction and the decreased

chance that i places third or lower. Note the similarity of the second terms in Φ02 and Φ01. The

lost surplus from reducing the chance that another bidder makes a payment to the auctioneer is

effectively replaced by i’s own, more valuable increased chance of winning.

Applying the incentive-compatibility condition (2), which holds in any type of auction, we

obtain the first-order condition

[t− (1−∆)B2(t)]dF (t)
n−1

dt
+ λ(n− 1)F (t)n−2[1− F (t)]B02(t) = 0. (7)

Simplifying (7) yields the differential equation

B02(t)−B2(t)
µ
1−∆
λ

¶µ
f(t)

1− F (t)
¶
= − t

λ

µ
f(t)

1− F (t)
¶

(8)
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Let ¯ denote 1¡¢
¸ and multiply each side of (8) by the integrating factor [1 ¡ F (t)]¯ to obtain

d
dt

n
B2(t)[1 ¡ F (t)]¯

o
=

µ
t

1 ¡ ¢

¶
d
dt

f[1 ¡ F (t)]¯g:

When we integrate both sides of this expression from t to t and use the boundary condition B2(t)[1¡
F (t)]¯ = 0 we obtain our bid function for a second-price charity auction:

B2(t) =
µ

1
1 ¡ ¢

¶(
t +

Z t

t

µ
1 ¡ F (x)
1 ¡ F (t)

¶¯
dx

)
(9)

As in a standard private values auction, the bid function for a second-price charity auction is

independent of the number of bidders, n. Also notice that when µ and ¸ are zero B2 simpli…es to

t, the well-known bidding rule for second-price independent private values auctions.10 When µ > 0

and ¸ = 0 (purely egotistical returns from charitable giving), µ a¤ects B2 as a subsidy would in a

standard auction. When µ and ¸ are both positive we have B2(t) > B1(t) 8 t:

The derivation also establishes that the symmetric increasing bidding equilibrium is unique for

all bidders whose types lie in the interior of the support of the distribution. If the number of bidders

exceeds 2 then the bid for the lowest type is again indeterminate – any bid between 0 and the value

from the above equation is optimal for type t: Similarly, a bidder with the valuation t has an

indeterminate bid, which can be any value that is at least the value given by the above expression,

namely B2(t) = t=(1¡¢): For simplicity we break the indeterminacy at the endpoints by assuming

that the bid function is continuous at the endpoints of its support, but nothing essential relies on

this supposition because expected revenue is una¤ected by restrictions on a set of probability zero.

Bidders with valuations near the upper boundary of t’s support submit bids that approach

t=(1 ¡ ¢): The role of ¸ in ¢ implies that this person’s bid is decreasing in ¸: However, unlike

the case of …rst-price charity auctions, bidding in a second-price auction is not always weakened by

an increase in the value that bidders place on others’ payments. The expected surplus from the

charity component of the auction, ©2, contains one term that is increasing in ¸ and one term that

decreases in ¸. The e¤ect of a marginal change in ¸ on the equilibrium bidding function is

@B2(t)
@¸

= ¡
µ

1
1 ¡ ¢

¶2
(

t +
Z t

t

·
1 +

µ
1 ¡ µ

¸

¶
¯ log

µ
1 ¡ F (x)
1 ¡ F (t)

¶¸µ
1 ¡ F (x)
1 ¡ F (t)

¶¯
dx

)
:

The integrand in @B2@¸ may be positive or negative, so it is not possible conclude that this derivative

has the same sign for all t. Intuition might suggest that @B2@¸ is at least positive for valuations

10A decrease in ¸ leads to an increase in ¯; and as ¸ goes to zero ¯ explodes and
³
1¡F (x)
1¡F (t)

´¯
disappears.
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near t, where bidders are more likely to determine the payment made by the winner than win the

auction themselves, but this is not always true. Bidders with intermediate and high valuations

will reduce their bidding as λ grows for the same reason that similar bidders do so in first-price

auctions: losing the auction becomes more attractive. These bidders put downward pressure on

the bids of people with low values of t (who do not want to out-bid competitors with higher t’s in

this separating equilibrium), so it is possible for all bids to fall with an increase in λ.

Some of these properties of B2 are effectively illustrated with a relatively simple example.

Example 1 Assume that the iid valuations of participants in a second-price charity auction are

distributed uniformly on [t, t]. Then the equilibrium bid function is

BU2 (t) =

µ
1

1−∆
¶µ

t+ βt

1 + β

¶
.

In Figure 1 we illustrate the ambiguous effects of changes in λ onB2. We assume that t ∼ U [0, 1]
and graph BU2 for a variety of λ values, holding θ fixed at 0.7. BU2 (1) falls as λ increases, but

BU2 (0) is higher when λ = 0.2 than it is for λ = 0.0 and 0.5. The apparent increase in BU2 (0) with

λ when λ is relatively low does not generalize to the case of t distributed uniformly on the arbitrary

bounded support [t, t]. When t ∼ U [t, t] we find:

∂BU2 (t)

∂λ

¯̄̄̄
λ=0

=

µ
1

1− θ

¶2
(t− 2t).

As long as t > t/2, the value of this derivative is negative for all t.

<< INSERT FIGURE 1 APPROXIMATELY HERE >>

It is frequently the case that second-price sealed-bid auctions are studied because they are

a convenient substitute for the more common open, ascending-bid (English) auction. Bidding

incentives in the two auction formats are very similar in private-value non-charity settings, and

expected revenue from the two auction formats is identical. We find that this parallel also exists for

charity auctions. This relationship between the auctions is studied through the “button auction,”

a stylized version of the English auction. A central feature of an oral auction — the opportunity to

observe contestants drop out of the bidding — is retained in the button auction.

The rules of a button auction are as follows. An auctioneer displays a continuously increasing

price for the object being sold. Each bidder has a personal button, and at the beginning of the

auction each bidder is pressing her own button. A depressed button means that the bidder is
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willing to buy the object at its current price. When the announced price is higher than the bidder

is willing to pay, she releases her button to exit the auction. Once a bidder exits the auction she

may not return. The auction is over when only one bidder is pressing her button; this bidder wins

the object and pays the auctioneer the price that was posted when the second-highest bidder exited

the auction.

In the proposition below we argue that the equilibrium bid function for second-price sealed-bid

auction, B2, is also an equilibrium “exit strategy” for contestants in a button auction. (All proofs

are collected in the appendix.)

Proposition 1. The following is a Perfect Bayesian Equilibrium in a button auction: Each

bidder of type t who has not yet released her button will release her button at the announced price p

if and only if p ≥ B2(t). The outcome of the button auction in terms of allocations and payments
is identical to the second-price sealed-bid auction. Moreover, these results for the button auction

hold whether or not bidders observe when their rivals exit.

An important consequence of this proposition is that bidders’ strategies are completely unaf-

fected by the opportunity to observe other contestants exit the auction. Despite the information

released about some bidders’ valuations when exits are observed, the uncertainty over the remain-

ing bidders’ tastes preserves the structure of individuals’ decision problems as they existed before

the contest began. Note how different the bidding strategies in the button auction would be if

all valuations were common knowledge. In this full-information situation all bidders other than

the one with the highest valuation would want to remain in the auction for as long as possible to

inflate the payment that the winner makes to the charity.

3.3 All-Pay Auctions

In an all-pay auction the highest bidder wins the object but all auction participants must pay their

bids. Negative bids are not permitted. As in a first-price auction, i’s return depends on her type,

her bid, and the highest offer tendered by the (n−1) other bidders. Let x represent the valuation of
the bidder other than i with the highest type; x is an order statistic with the distribution F (x)n−1.

All bidders use the function BA to map valuations into bids. When i mimics an individual with

type s she bids BA(s), and the highest bid submitted by the other auction participants is BA(x).

If BA(s) is larger than BA(x) bidder i receives the prize, which she values at t, and i pays BA(s)

to the auctioneer. Bidder i loses the auction when she imitates a type that is less than x, but she
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still must pay her bid of BA(s). Regardless of the identity of the winner, i receives a benefit of θ

for each of her own dollars transferred to the auctioneer and λ for each dollar bid (and paid) by the

other auction participants. The two possible auction outcomes are combined to yield i’s expected

return from an all-pay charity auction:

π(s|t, n) =
Z s

t
tdF (x)n−1 − (1− θ)BA(s) + λ(n− 1)

Z t

t
BA(x)dF (x). (10)

The all-pay structure of this auction is evident in that i’s bid of B(s) is paid regardless of the

identity of the auction winner. An important feature of (10) is that i’s choice of s does not affect

her benefit from payments made by the (n − 1) other auction participants. When we separate π

into non-charity and charity components,

π(s|t, n) = tF (s)n−1 −BA(s) + ΦA(s)

with ΦA(s) = θBA(s) + λ(n− 1)
Z t

t
BA(x)dF (x),

we note that i’s surplus from the auctioneer’s revenue increases in her own reported type, s.

Additionally, i’s incremental surplus from increasing s is just Φ0A = θB0A(s), which is independent

of λ and other bidders’ payments.

As in single-price auctions, incentive compatibility is captured by condition (2). Differentiating

(10), restricting s = t, and setting the result to zero yields

t
dF (t)n−1

dt
− (1− θ)B0A(t) = 0. (11)

The first-order condition in (11) can be rearranged into a simple differential equation:

d

dt
[BA(t)] =

t

1− θ

dF (t)n−1

dt
. (12)

We integrate (12) from t to t, employ the boundary condition BA(t) = 0, and find that the bid

function for an all-pay charity auction is

BA(t) =
1

1− θ

·
tF (t)n−1 −

Z t

t
F (x)n−1dx

¸
. (13)

To understand why BA(t) = 0, suppose that the equilibrium bid function has BA(t) > 0. In the

posited equilibrium a bidder with the lowest possible type has no chance of winning the auction

but still makes a payment to the auctioneer. This implies that for type t the first term in (10) is

zero and the second is negative. The bidder’s return would increase with a reduction in BA(t),

therefore no bid function with BA(t) > 0 is an admissible equilibrium bidding rule.
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The function (13) differs from bid functions in private value all-pay auctions only in the term

1
1−θ . For the cases of first- and second-price charity auctions we found that an effect on bidding can

occur from increases in λ. This is clearly not the case for the bid function in (13); λ is absent from

the all-pay bid function. Although a bidder benefits from an increase in λ because her utility from

others’ payments rises, a change in λ does not affect the bidding incentives of auction participants.

4 Revenue Comparisons

We now compare expected revenue from the three auction formats analyzed in Section 3. We begin

with a discussion of auction revenue when λ = 0. When bidders place no value on auction revenue

from people other than themselves, the auction formats considered above are revenue-equivalent.

Next, we describe the possible revenue rankings between all-pay auctions and first- and second-price

auctions for λ > 0. The section concludes with a comparison of expected revenue from single-price

auctions while λ is positive.

4.1 A Simple Revenue Equivalence Result

Suppose λ = 0, so that the charity auction is essentially a standard (non-charity) auction with an

ad valorem subsidy of θ to each bidder. When participants in the charity auction do not benefit

from other bidders’ payments each participant inflates by (1−θ)−1 the bidding strategy that would
be used in a standard auction. It is well known that non-charity all-pay, first-price, and second-

price auctions have the same expected revenue when bidders’ have independently drawn private

values for the prize.11 The simple inflation of bid functions by (1 − θ)−1 does not affect revenue

equivalence.

We derive this result (and establish some notation that is useful below) by examining properties

of utility from bidding in a charity auction while λ = 0. First, note that when bidder i chooses

to announce type s in the signalling game described above, her probability of winning any type of

charity auction is F (s)n−1. Second, we may write the expected payment of bidder i as P (s, n),

where P is a function that depends on the rules of the auction in which i is participating. These

terms may be incorporated into an alternative expression for i’s payoff from a charity auction when

λ = 0:

π(s|t, n) = F (s)n−1t+ (1− θ)P (s, n).

11See Klemperer [1999] for a detailed survey of revenue equivalence.
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When i reports her type truthfully (and all other bidders follow their equilibrium strategies), we

write expected utility as U(t, n) = π(t|t, n), so that

U(t, n) = F (t)n−1t− (1− θ)P (t, n). (14)

As bidder i’s choice of s comes from the optimality condition (2), we may use the envelope theorem

and write
∂U(t, n)

∂t
= F (t)n−1. (15)

The slope of the utility function is thus independent of auction format. We have assumed that

bidders receive no benefit from the payments made by others to the charity, so a bidder with the

lowest possible type (t) is sure to lose the auction and she will have zero utility regardless of auction

format. This provides us with a boundary condition, U(t, n) = 0, for the differential equation in

(15). The solution to this differential equation provides an expression for expected utility that is

independent of auction format but must be equal to (14). If (14) is independent of auction format

for an arbitrary bidder i then the expected payment, P , of any bidder is also the same for any

auction format. Since expected revenue is determined by the expected payments of bidders, we

conclude that expected revenue is equal for any auction in which (15) holds and U(t, n) = 0.

4.2 All-Pay v. Single-Price Auctions

Next we consider situations in which θ ≥ λ > 0. Recall that the bidding function for an all-pay

charity auction is independent of λ, so the expected revenue from an all-pay auction with a fixed

value of θ is unaffected by changes in λ. This is not the case for first-price auctions. In Section

3.1 we established that participants in first-price auctions bid less aggressively when λ increases

(∂B1∂λ < 0). Expected revenue from a first-price charity auction is

ER1 =

Z t

t
B1(t)dF (t)

n. (16)

The value of the integrand in (16) is always smaller when λ > 0 than it is when λ = 0, so expected

revenue in a first price auction for λ > 0 is less than expected revenue from the same auction when

λ = 0. Since a first-price auction with λ = 0 is revenue-equivalent to an all-pay auction with any

value of λ, when λ > 0 a first-price auction raises less revenue than an all-pay auction.

We cannot apply a similar argument to a comparison of the expected revenue from a second

price auction,

ER2 =

Z t

t
B2(t)n(n− 1)F (t)n−2[1− F (t)]dF (t), (17)
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to the expected revenue of an all-pay auction,

ERA = n

Z t

t
BA(t)dF (t). (18)

The derivative of B2 with respect to λ does not have the same useful properties as ∂B1
∂λ . In fact, no

approach to comparing expected revenue from all-pay and second-price auctions will demonstrate

that one selling format is always more lucrative than the other for all n ≥ 2. We illustrate this

point with the example of t ∼ U [0, 1]. When t is distributed uniformly on the unit interval, ERA
is larger than ER2 when n ≥ 3 but the revenue ranking depends on parameter values for n = 2.

Example 2 Suppose t is distributed uniformly on [0, 1]. Then the bid functions in second-price

and all-pay auctions are

B2 =

µ
1

1−∆
¶µ

1 + βt

1 + β

¶
and BA =

µ
1

1− θ

¶µ
n− 1
n

¶
tn.

Expected revenue from the two auction formats are

ER2(n) =
λ(n+ 1) + (1−∆)(n− 1)
(1−∆) (1−∆+ λ) (n+ 1)

and ERA(n) =

µ
1

1− θ

¶µ
n− 1
n+ 1

¶
.

The difference ERA(n)−ER2(n) is proportional to

D(n) = λ[(n− 3)(1− θ) + 2λ(n− 1)].

Clearly, if n ≥ 3 then D(n) > 0 and ERA(n) > ER2(n). If n = 2 then ERA(n) > ER2(n) only if
(2λ+ θ) > 1.

The intuition behind this revenue result is easier to grasp if we note that the all-pay charity

auction is revenue-equivalent to a standard second-price auction in which bidders receive an ad

valorem subsidy of (1− θ)−1. In this auction, bidders submit tenders equal to their “subsidized”

valuations: t/(1−θ). Bidders in second-price charity auctions also offer their subsidized valuations,
t/(1−∆), plus an amount that is positive for all t < t and zero for t = t. Equation (9), our initial
expression for B2, can be written simply as

B2(t) =
t

1−∆ + ρ(t), with ρ(t) =

µ
1

1−∆
¶Z t

t

·
1− F (x)
1− F (t)

¸β
dx.

In the example above with t ∼ U [0, 1], the function ρ is decreasing in t. As the number of bidders

grows, the expected valuation of the second-highest bidder increases too, and the winner’s payment
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is likely to be decided by a bidder with a low value of ρ. When the winner’s payment is largely

determined by the subsidized valuations, the all-pay auction is more lucrative than the second-price

auction because (1 − θ)−1 > (1 −∆)−1 when λ > 0. This ranking of expected revenues may be

reversed when the number of bidders is low, and the winner’s payment is likely to be determined

by a bidder with a relatively high value of ρ(t).

Unfortunately, this reasoning does not hold for the general distribution function F . The

function ρ is always decreasing in t for valuations sufficiently close to t, but we cannot rule out

that ρ0 > 0 for some values of t. This implies that there may be some distribution functions for

which ERA(n) > ER2(n) but ERA(n+1) < ER2(n+1). In the following proposition we describe

expected revenue from charity auctions when n goes to ∞. In this limit ρ has no effect on the
winner’s payment.

Proposition 2. The expected revenue from first-price, second-price, and all-pay auctions have

the following properties:

1. First-price: lim
n→∞ [ER1(n)] =

t
1−∆ ,

2. Second-price: lim
n→∞ [ER2(n)] =

t
1−∆ ,

3. All-pay: lim
n→∞ [ERA(n)] =

t
1−θ .

This proposition implies that, for λ > 0 and sufficiently large values of n, expected revenue

from an all-pay auction is larger than that of either single-price format. Moreover, expected

revenues from first- and second-price charity auctions converge as n→∞. The limiting values in
Proposition 2 are also the winners’ bids in these auctions. The winning bidder in an all-pay auction

submits a bid that is high enough to leave her with zero additional surplus from winning (rather

than withdrawing from the auction). Her benefit from other bidders’ payments is unaffected by

her own bid, so she is willing to compete away all additional surplus from winning. In the single-

price auctions the bidder with the highest valuation must be permitted to retain some surplus from

winning and making the only payment to the auctioneer. If not, this person could submit a bid

of zero and receive a strictly positive benefit from allowing another person (of virtually the same

valuation) to win the auction.

The relatively high revenue from an all-pay auctions with a large number of bidders invites

comparison of this mechanism with other types of contests in which many people pay a small fee
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in return for a chance to win a prize. Consider a lottery or raffle in which proceeds of the contest

are spent on a public good, as in Morgan [2000]. We conjecture that an all-pay auction would

raise more revenue than a lottery because the auction always awards the prize to the person with

the largest valuation. The auction is an efficient allocation mechanism, whereas a lottery is not.

A person with a strong taste for a prize may submit a higher bid in an all-pay auction than she

would be willing to spend on lottery tickets.

4.3 First-Price v. Second-Price Auctions

In order to establish this section’s main result, we begin by stating a useful relationship between

expected payments and expected revenue. Consider the expected payment of a person with the

highest possible value, t, for the auctioned object. This bidder is certain to win the auction in

equilibrium, and in a first-price contest with n participants her payment is simply her bid:

P1(t, n) =
1

1−∆

(
t−

Z t

t
F (x)αdx

)
.

While the payment of a bidder with type t in a first-price auction is known with certainty, this

person’s payment in a second-price auction is determined by the unobserved tastes of the bidder

with the second-highest value of t.12 The expected payment is:

P2(t, n) =
1

1−∆
Z t

t

(
t+

Z t

t

·
1− F (x)
1− F (t)

¸β
dx

)
dF (t)n−1.

These payment terms may be inserted into the expected utility for a bidder of taste t:

Uj(t, n) = t− (1− θ)Pj(t, n),

where the j subscript indicates (when necessary) the auction format.13 The expected utility of a

bidder with an arbitrary type, t, is:

U(t, n) = U(t, n)−
Z t

t

∂U(x, n)

∂x
dx.

By integrating U over values of t we obtain an average or ex ante expected utility to auction

participants. This term is

E[U(t, n)] = U(t, n)−
Z t

t

Z t

t

∂U(x, n)

∂x
dxdF (t),

12 It may be more helpful to think of the bidder who determines the winner’s payment as the person with highest

value of t among the remaining (n− 1) participants rather than the person with the second-highest of n values of t.
13We include the j subscript only in expressions that compare utility, expected payment, or expected revenue across

auction formats.
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and note that the difference in ex ante expected utility from the single-price auction formats depends

only on the difference in P :

E[U2(t, n)]−E[U1(t, n)] = (1− θ)[P1(t, n)− P2(t, n)]. (19)

With this expression we have tied properties of utility for all bidders to a relationship between

expected payments made by one particular type of bidder.

Now consider a second approach to expected utilities. Conditional on a bidder of type t winning

a charity auction, the total expected utility to all bidders is:X
i
[U(si, n) | t = max{sj}nj=1] = t− (1− θ)P (t, n) + (n− 1)λP (t, n).

This expression is the value to the winner of receiving the object, t; the net utility from the winner’s

payment and her own benefit from making a transfer to the charity, −(1− θ)P ; and the benefit to

all other auction participants from observing the winner’s payment, (n − 1)λP. Integrating with
respect to the winner’s type, t, yields

E
³X

i
[U(si, n)]

´
=

Z t

t
tdF (t)n + [(n− 1)λ− 1 + θ]

Z t

t
P (t, n)dF (t)n (20)

= nE[U(t, n)].

The last integral in the expression above, the expected payment of the bidder with the highest

type, is the expected revenue from the contest.14 Thus, the difference in ex ante expected utilities

from the two single-price auction formats is

E[U2(t, n)]−E[U1(t, n)] = 1

n
[(n− 1)λ− 1 + θ][ER2(n)−ER1(n)]. (21)

We now have a pair of expressions, (19) and (21), that define a relationship between expected

revenue and expected payment. Note that the differences ER2(n)−ER1(n) and P1(t, n)−P2(t, n)
have the same sign if (n − 1) > 1−θ

λ , and the differences have the opposite sign if the inequality

is reversed. We establish our revenue ranking indirectly, by examining P1 − P2 and noting its
implications for expected revenue.

Proposition 3. P1−P2 is positive when (n−1) > 1−θ
λ and negative when (n−1) < 1−θ

λ . This

implies that ER2 > ER1 for all admissible combinations of parameter values such that (n− 1) 6=
14The relationship between ex ante utility and expected revenue in equation (20) implies that bidders’ welfare is

increasing in auction revenue when [(n−1)λ−1+θ] > 0. Prior to the realization of their valuations for an auctioned

object, potential bidders may prefer that the auctioneer selects a revenue-maximizing auction format.
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1−θ
λ . In the borderline case of (n − 1) = 1−θ

λ , direct examination of expected revenue expressions

reveals that ER2 > ER1 obtains again.

In light of the revenue equivalence result for λ = 0, our finding in Proposition 3 must be

attributed to the benefit from other players’ payments on B1 and B2. Given that a particular

bidder will lose the auction, there is an incentive (and ability) to increase the winner’s payments in

a second-price auction that is not present in a first-price contest. This result on expected revenue

accords with common practice in charity auctions. A fairly popular format for charity auctions of

multiple objects is to sell the less valuable items in a “silent auction” while guests mingle, and the

items with higher expected prices are sold in oral, ascending-bid auctions.

5 Conclusions

In this paper we have studied equilibrium bidding strategies in charity auctions. Three selling

formats were examined: all-pay auctions and first- and second-price auctions. We found that

participants in all types of auctions bid more aggressively when they benefit from revenue collected

by the host charity. If bidders receive no benefit from the payments made by bidders other than

themselves, they simply inflate the tenders that they would have made in a standard (non-charity)

auction by a constant. Revenue equivalence among the auction formats is preserved in this case.

Bidding incentives are generally more complicated when auction revenue is like a public good that

all bidders enjoy regardless of which bidder(s) contributed revenue. An increase in the benefit from

others’ payments can depress bids in the single-price auctions, and the auctions each have different

expected revenue. All-pay auctions are the most lucrative format when the number of bidders is

sufficiently large, and second-price auctions have higher expected revenue than first-price auctions.

In practice charity auctions can be quite complicated. Many fund-raising events include the

sale of several objects in a sequence of auctions. Minimum bids and entrance fees for charity events

are also typical (and important to overall revenue). For example, in 2000 the Napa Valley Wine

Auction had an entrance fee of $1,000. We intend to study these issues in future research. Given

the similarity of equilibrium bidding in an all-pay charity auction to that in the non-charity case, we

suspect that the optimal entrance fee or minimum bid for an all-pay auction will not be substantially

different from those in the standard setting. However, these rules and fees in first- and second-price

auctions are likely to be different from those in non-charity auctions and different from each other.

A broader set of research questions exists for considering when a charitable organization would
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prefer to hold an auction instead of using a different fund-raising mechanism. It may be the case

that auctions are most useful when potential contributors are particularly unwilling to open their

wallets for a charity. We have shown that charitable groups can use auctions to attract revenue

(above what would be collected in a non-charity auction) from potential contributors who otherwise

would not be eager to make voluntary donations to the organization.

A Appendix

We begin by establishing that the we have derived equilibrium bidding functions for the three

auction formats considered in this paper. Following this, we re-state and prove the propositions

offered above.

A.1 Equilibrium bid functions

The bid functions we presented in Section 3 constitute equilibrium bidding rules if they satisfy the

initial assumptions we stated in Section 2 (i.e., they are increasing and differentiable) and they are

optimal solutions to individual bidders’ signalling problems. We consider each auction format in

turn to verify that these conditions hold.

First-price auctions

B1 is increasing and differentiable. The derivative of B1,

B01(t) =
µ

α

1−∆
¶
f(t)

F (t)

Z t

t

µ
F (x)

F (t)

¶α

dx,

exists for all t ∈ (t, t) and is strictly positive.

B1 is optimal. The following proof applies to the other types of auction as well. For each

type of auction we can write π(s|t, n) = (t−s)F (s)n−1+π(s|s, n) = (t−s)F (s)n−1+U(s), where we
let U(s) denote π(s|s, n). As long as the first-order condition for a bidder of type t is satisfied we
can apply the envelope theorem to obtain U 0(t) = F (t)n−1, which establishes that the function U

is increasing and strictly convex because its derivative, F (t)n−1, is positive and strictly increasing

in t. We show that, for any distinct s and t in [t, t] we have π(s|t, n) < π(t|t, n), which can be
rewritten as (t− s)F (s)n−1+U(s) < U(t), or equivalently, for s ∈ (t, t), (t− s)U 0(s)+U(s) < U(t).
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This last inequality follows immediately from the fact that U is strictly convex. For s = t, the

required inequality is equivalent to U(t) < U(t) which is true because U is increasing. Similarly,

for s = t, the inequality is equivalent to t − t + U(t) < U(t) which is true because U 0(t) < 1 for

t < t.

Second-price auctions

B2 is increasing and differentiable. The derivative of B2,

B02(t) =
µ

β

1−∆
¶µ

f(t)

1− F (t)
¶Z t

t

µ
1− F (x)
1− F (t)

¶β

dx,

exists for all t ∈ (t, t) and is strictly positive.

All-pay auctions

BA is increasing and differentiable. The derivative of BA,

B0A(t) =
t

1− θ

dF (t)n−1

dt
,

exists for all t ∈ (t, t) and is strictly positive.

A.2 Propositions and proofs

Proposition 1. The following is a Perfect Bayesian Equilibrium in a button auction: Each bidder

of type t who has not yet released her button will release her button at the announced price p if

and only if p ≥ B2(t). The outcome of the button auction in terms of allocations and payments

is identical to the second-price sealed-bid auction. Moreover, these results for the button auction

hold whether or not bidders observe when their rivals exit.

Proof. We begin with a simplified static game which operates in the same way as the button

auction except that all players choose simultaneously and once-and-for-all when their buttons are

to be released. It should be clear from the rules of the button auction that this static game has

exactly the same payoff structure as the second-price sealed-bid auction, and hence it is a Bayesian

Nash equilibrium for each player of type t to release her button at the price B2(t).

Next consider the case in which bidders can decide whether to exit as the price indicator rises,

and bidders can observe when rivals exit. Assume that all bidders other than i are using B2 to
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determine their exit prices, and consider player i’s optimal response to this situation as the price

indicator rises. Let i have type t. At any price p person i observes the number m ≤ n of bidders
that are still “live” and can conclude that they are of type s ≥ x, where x = B−12 (p). We argue

that under these conditions if p ≤ B2(t) then the bidder of type t will find it optimal to wait until
the price is B2(t) to exit. The reason is that the expected payoffs as a function of exit price b are

exactly the same as those in a second-price auction with bid b, in which there are m bidders and

the rivals each have types drawn independently from the distribution F (s) conditional on s ≥ x.
Examination of the function B2 shows that it is invariant with respect to m ≤ n, the number of

bidders who are active in the auction. B2 is also unaltered when the unconditional distribution F (s)

is replaced by the appropriate conditional distribution F (s)−F (x)
1−F (x) . This implies that at any price p

in the button auction it is optimal for i to wait until B2(t) if p < B2(t), and to exit immediately

once p ≥ B2(t). Thus the posited strategies constitute a Perfect Bayesian Equilibrium.
Finally consider the situation in which bidders do not observe others’ exit decisions. Now all

that a live bidder knows is that there is at least one other live bidder left (or the auction would

have ended). The previous result showed that the posited strategies are optimal regardless of how

many other bidders remain, and so, in this case too, the strategies comprise a Perfect Bayesian

Equilibrium. Q.E.D.

Proposition 2. The expected revenue from first-price, second-price, and all-pay auctions have

the following properties:

1. First-price: lim
n→∞ [ER1(n)] =

t
1−∆ ,

2. Second-price: lim
n→∞ [ER2(n)] =

t
1−∆ ,

3. All-pay: lim
n→∞ [ERA(n)] =

t
1−θ .

Proof. We prove this proposition by establishing each listed result separately.

1. First-price. Consider how the function B1 changes with n. As n→∞ the exponent, α, in

the integrand of B1 also goes to infinity. Since
F (x)
F (t) is always less than one for x ∈ (t, t), the

integral Z t

t

µ
F (x)

F (t)

¶α

dx

disappears as n→∞. B1(t) approaches t
1−∆ . Now consider the valuation of the bidder that

wins the auction. The distribution of the highest draw from F becomes concentrated at t
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as n→∞, so the only bid value in (16) that is given any weight is B1(t) = t
1−∆ . Therefore

ER1 approaches t
1−∆ as n→∞.

2. Second-price. B2 is independent of n, but as n → ∞ the distribution of the second-

highest draw from F becomes concentrated at t. The bid of an individual with type t is the

only bid given any weight in the expected revenue from a second price auction, (17). Since

B2(t) =
t

1−∆ , ER2 approaches
t

1−∆ as n→∞.

3. All-pay. In Section 4 we argued that the expected revenue from an all-pay charity auction is

(1−θ)−1 times the revenue from a standard all-pay (or first- or second-price) auction. Because
of the revenue equivalence result for standard auctions, the expected revenue from a standard

auction is the expected value of the second-highest draw from the type distribution F . As

the number of bidders approaches ∞, the expected value of the second-highest valuation
approaches t, as does the expected revenue in a standard auction. Therefore, as n → ∞,
ERA goes to t

1−θ . Q.E.D.

Proposition 3. P1−P2 is positive when (n−1) > 1−θ
λ and negative when (n−1) < 1−θ

λ . This

implies that ER2 > ER1 for all admissible combinations of parameter values such that (n− 1) 6=
1−θ
λ . In the borderline case of (n − 1) = 1−θ

λ , direct examination of expected revenue expressions

reveals ER2 > ER1 obtains again.

The following lemma is necessary for the proof of Proposition 3 but holds no economic content,

so it is presented in this appendix only. The proof of Proposition 3 follows.

Lemma 1. Suppose that z : [a, b] → < is continuous on [a, b], differentiable on (a, b), and

z = 0 at a and b. If z is positive wherever its derivative vanishes, then z is positive on (a, b).

Alternatively, if z is negative wherever z0 = 0, then z is negative on (a, b).

Proof of Lemma 1. We prove the first part of the lemma (which concludes z is positive on

(a, b)) by proving the contrapositive. Suppose z(x) ≤ 0 for some x in (a, b). Then either x is a

global minimum or there is a global minimum y such that z(y) < z(x) ≤ 0. In either case, we have
found a global minimum in (a, b). As this is an interior local minimum, z0 must vanish at a point

where z is not positive. A similar argument proves the second part of the lemma. Q.E.D.
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Proof of Proposition 3. In Case 1 of this proof we suppose that (n − 1) 6= 1−θ
λ , and the

revenue result is established by examination of P1 − P2. In Case 2 we assume (n− 1) = 1−θ
λ and

prove ER2 > ER1 directly.

Case 1:

Our first step is to rewrite P2(t, n) as

P2(t, n) =
1

1−∆

(Z t

t
tdF (t)n−1 +

Z t

t

Z t

t

·
1− F (x)
1− F (t)

¸β
dxdF (t)n−1

)

=
1

1−∆

(
t−

Z t

t
F (t)n−1dt+

Z t

t

Z x

t

dF (t)n−1

[1− F (t)]β [1− F (x)]
βdx

)
.

Now the difference in expected prices depends on the value of an expression integrated from t to t:

P1(t, n)− P2(t, n) = 1

1−∆
Z t

t

½
F (x)n−1 − F (x)α −

µZ x

t

dF (t)n−1

[1− F (t)]β
¶
[1− F (x)]β

¾
dx.

Let g(x) represent the terms in braces, so that

P1(t, n)− P2(t, n) = 1

1−∆
Z t

t
g(x)dx.

We verify the sign of P1 − P2 by showing that the integrand g is either positive ∀ x or negative ∀
x, depending on parameter values and the number of bidders.

We now demonstrate that Lemma 1 applies to g. The continuity and differentiability of g

follow from the assumption that F has these properties; substitution of t and t into g sets the value

of this function to zero. Differentiation yields

g0(x) = (n− 1)F (x)n−2f(x)− αF (x)α−1f(x)− (n− 1)F (x)
n−2f(x)

[1− F (x)]β [1− F (x)]β

+

µZ x

t

dF (t)n−1

[1− F (t)]β
¶
β[1− F (x)]β−1f(x)

=

µZ x

t

dF (t)n−1

[1− F (t)]β
¶
β[1− F (x)]β−1f(x)− αF (x)α−1f(x).

And since the density is positive

g0(x) = 0⇔
µZ x

t

dF (t)n−1

[1− F (t)]β
¶
=

αF (x)α−1

β[1− F (x)]β−1 .

Consider an x ∈ (t, t) at which g0(x) = 0. We now show that at any such x, g(x) > 0. When

g0(x) = 0 it must be true that

g(x) = F (x)n−1 − F (x)α − α

β
F (x)α−1[1− F (x)].
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The sign of g(x) is unaffected by division by F (x)n−1, which yields

h(x) = 1− [1− q]F (x)q − qF (x)q−1,

where q = λ(n−1)/(1− θ). The new parameter q takes values in (0,∞), and the relevant cases for
this parameter are when q > 1 (P1 − P2 and ER2 − ER1 have the same sign) and q < 1 (P1 − P2
and ER2 −ER1 have the opposite sign). The case of q = 1 is addressed below.

Our approach is to show that the sign of h is positive (negative) for all x ∈ (t, t) when q > 1
(q < 1). If h has the appropriate sign for all x, then g will have the same sign as h whenever

g0 = 0. First note that when q > 1, it is the true that limx→t h(x) = 1, limx→t h(x) = 0, and

h0(x) < 0 ∀ x ∈ (t, t). Together, these conditions imply that h(x) > 0 ∀ x ∈ (t, t) when q > 1, so
we may also conclude that g > 0 when g0 = 0. By Lemma 1 we know that this implies g > 0 for

all x ∈ (t, t), so P1 > P2. In Section 4.3 we established that P1 > P2 ⇒ ER2 > ER1 when q > 1.

Now consider q < 1, for which limx→t h(x) = −∞, limx→t h(x) = 0, and h0(x) > 0 ∀ x ∈ (t, t).
These conditions imply h(x) < 0 ∀ x ∈ (t, t) when q < 1, so we may also conclude that g < 0 when
g0 = 0. By Lemma 1 we know that this implies g < 0 for all x ∈ (t, t), so P1 < P2. In Section 4.3
we established that P1 < P2 ⇒ ER2 > ER1 when q < 1.

Case 2:

The maintained assumption of (n−1) = 1−θ
λ implies that the parameters α and β, which appear

in B1 and B2, are both equal to n. This simplifies expected revenue terms and facilitates their

direct comparison. These terms are:

ER1 =
1

1−∆
Z t

t

½
t−

Z t

t

·
F (x)

F (t)

¸n
dx

¾
dF (t)n

=
1

1−∆

(Z t

t
tdF (t)n −

Z t

t

Z t

x

dF (t)n

F (t)n
F (x)ndx

)

=
1

1−∆

(
t−

Z t

t
F (t)ndt+ n

Z t

t
[logF (t)]F (t)ndt

)

ER2 =
1

1−∆
Z t

t

(
t+

Z t

t

·
1− F (x)
1− F (t)

¸n
dx

)
dFn(2)(t)

=
1

1−∆

(Z t

t
tdFn(2)(t) +

Z t

t

Z x

t

dFn(2)(t)

[1− F (t)]n [1− F (x)]
ndx

)

=
1

1−∆

(
t−

Z t

t
Fn(2)(t)dt+

Z t

t

Z x

t

dFn(2)(t)

[1− F (t)]n [1− F (x)]
ndx

)
,
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with Fn(2)(t) as the distribution function of the second-highest of n draws from F . Next, define the

function g(x) so that

ER2 −ER1 = 1

1−∆
Z t

t
g(x)dx.

From the expected revenue expressions above we know that

g(x) =

Z x

t

dFn(2)(t)

[1− F (t)]n [1− F (x)]
n − nF (x)n−1[1− F (x)]− n [logF (x)]F (x)n.

Differentiation of g yields

g0(x) =
n(n− 1)Fn−2(x)[1− F (x)]f(x)

[1− F (x)]n [1− F (x)]n −Z x

t

dFn(2)(t)

[1− F (t)]nn[1− F (x)]
n−1f(x)− n(n− 1)F (x)n−2[1− F (x)]f(x) +

nF (x)nf(x)− nF (x)n−1f(x)− n2 [logF (x)]F (x)n−1f(x)

= −
Z x

t

dFn(2)(t)

[1− F (t)]nn[1− F (x)]
n−1f(x)− n2 [logF (x)]F (x)n−1f(x).

This derivative is equal to zero whenZ x

t

dFn(2)(t)

[1− F (t)]n = −
n [logF (x)]F (x)n−1

[1− F (x)]n−1 ,

Consider an x ∈ (t, t) at which g0(x) = 0. We now show that at any such x, g(x) > 0. When

g0(x) = 0 it must be true that

g(x) = −n [logF (x)]F (x)n−1 − nF (x)n−1[1− F (x)].

The sign of this expression is unaffected by dividing by nF (x)n−1, so we do this to obtain the

simpler expression

h(x) = − log[F (x)]− [1− F (x)].

As in Case 1, we show that the sign of h is constant for all x in order to establish the sign of g

whenever g0 = 0. The function h has the following properties: limx→t h(x) =∞, limx→t h(x) = 0,
and h0(x) < 0 ∀ x ∈ (t, t). Together, these conditions imply h(x) > 0 ∀ x ∈ (t, t), so we may
also conclude that g > 0 when g0 = 0. By Lemma 1, we know that this implies that g(x) > 0 ∀
x ∈ (t, t), so it must be the case that ER2 > ER1 when (n− 1) = 1−θ

λ . Q.E.D.
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