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Abstract

Strategic processes are increasingly delegated to algorithms. The autonomous

nature of decision-making algorithms gives rise to concerns that algorithms

might learn to collude in the absence of any external guidance and commu-

nication. To measure the risk of algorithmic collusion, I use the Natural Policy

Gradient method with a Gaussian policy to simulate the behaviors of algorithms

in simultaneous Bertrand and Cournot duopoly and oligopoly environments. I

show that the Natural Policy Gradient method converges to Nash equilibrium

in all markets simulated and is less prone to algorithmic collusion. To the best

of my knowledge, this is the first study of algorithmic collusion in continuous

space while providing evidence that algorithms can learn to reach competitive

results in certain contexts. The convergence to Nash equilibrium is robust to

asymmetries in marginal costs and changes in demand functions.

∗I am grateful for invaluable guidance, advice, and support from my advisor, Professor Federico
Ciliberto. I would also like to thank Professor Gaurub Aryal for inspiring me to explore this area as
well as Professor Amalia Miller for insightful suggestions and comments. Finally, I wish to thank my
fellow DMP cohort for helpful discussions in the early stage of this study. All errors remain my own.
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1 Introduction

With the advancement of technology and the wide application of artificial intelligence,

an increasing number of firms have started using artificial intelligence algorithms to

optimize their selling strategies. Indeed, algorithms help firms find optimal strategies,

make timely adjustments to market changes, and enhance decision-making efficiency.

However, some real-world cases and studies have suggested that algorithmic decision-

making would lead to supra-competitive results in a coordinated fashion (U.S. Depart-

ment of Justice, 2016; Assad et al., 2020; Brown and MacKay, 2021). While algorithms

intentionally designed to achieve price-fixing or other collusive behaviors are less of a

concern, the tendency for self-learning algorithms, which are programmed to maxi-

mize profits, to arrive at supra-competitive results and sustain collusive outcomes is

the main problem.1 The convergence to collusive results inhibits competition, harms

consumer welfare, and gives rise to a challenging antitrust issue as tacit algorithmic

collusion escapes scrutiny from antitrust enforcers who mainly target explicit agree-

ment among competitors and require evidence that tends to rule out the possibility

of independent actions (Harrington, 2018; Ezrachi and Stucke, 2020). There will be

a gap between current antitrust policy and tacit algorithmic collusion because of the

independence between algorithms, the detachment between programmers and the be-

haviors of algorithms, the unfamiliarity of underlying mechanisms, and the difficulty of

detecting collusive evidence. Thus, will algorithmic collusion actually happen and how

real the risk of algorithmic collusion are questions of economists’ and policymakers’

investigations.

1See Ezrachi and Stucke (2017) for detailed categorization of algorithmic collusion.
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Related Literature

This paper investigates the impact of decision-making algorithms on equilibrium out-

comes in Bertrand and Cournot competitions and contributes to the growing literature

on decision-making algorithms and algorithmic collusion. In the economics literature,

researchers have mainly relied on empirical, theoretical, and experimental approaches

to assess the risk of algorithmic collusion. Some focus on one particular market that

has adopted algorithmic pricing years ago and try to find empirical evidence of the

impact of adopting algorithmic pricing. Some develop new frameworks that capture

features of algorithmic sellers to explain the underlying mechanisms behind the results.

Some construct artificial intelligence algorithms to simulate possible outcomes learned

by algorithms. The following two examples present the results of recent studies on

algorithmic collusion that use empirical and theoretical approaches.

Assad et al. (2020) focus on the German retail gasoline market, where algorithmic

pricing has been widely adopted since 2017. Using price data for every German gas

station from 2014 to 2019, they compare the retail margins of adopting and non-

adopting gas stations through regressions and show a 9% increase in the mean station-

level margins after adoption. By examining the timing of adoption effects, Assad et

al. suggest margins gradually increased after a year of adoption and conclude that

algorithms learned to collude tacitly.

In a recent research paper, Brown and MacKay (2021) also find evidence of supra-

competitive prices in e-commerce markets. They first collect hourly data from online

retailers and discover that online retailers update prices at regular intervals, and re-

tailers with faster pricing technology react to the price changes of retailers with slower
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pricing technology. Based on the patterns they detect, Brown and MacKay construct

a new theoretical model that incorporates pricing technology to explain the behaviors

of algorithmic sellers. They demonstrate that the asymmetry in pricing technology

enables firms to charge higher equilibrium prices. In cases where firms have differ-

ent pricing frequencies, they prove that the equilibrium prices fall on the faster firm’s

Bertrand best-response function, which is between the Bertrand and Stackelberg equi-

librium.

It is not common to have sufficient data of markets that have adopted decision-

making algorithms. Theoretical studies are often built on simplified assumptions of

the dynamic market. Thus, another strand of the literature takes an experimental

approach to simulate stochastic markets and observes the interactions between algo-

rithms. Using Q-learning, a model-free value-based reinforcement learning algorithm,

to simulate Bertrand and Cournot environments, researchers have shown that through

self-learning, decision-making algorithms could independently arrive at collusive results

without explicit human design and sustain supra-competitive behaviors using reward

and punishment strategies. For instance, Calvano et al. (2020) construct Q-learning al-

gorithms that consist of multiple pricing agents and allow them to interact in repeated

Bertrand duopoly and oligopoly environments. Abada and Lambin (2020) simulate

the environment of an electricity market and implement Q-learning algorithms in re-

peated Cournot games, and Klein (2021) focuses on sequential pricing competitions.

However, several drawbacks of the Q-learning algorithm, such as slow learning pro-

cess, no theoretical convergence guarantees, and applicability to only discrete space,

make the algorithm hard to be applied in real-world scenarios. In the study of Calvano

et al. (2020), Q-learning takes around 850,000 iterations, which means more than three
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years of learning in real-time, to find the optimal price (Hettich, 2021). In all their

simulations, convergence guarantees that exist for single-agent Q-learning do not hold

for multi-agent Q-learning since the multi-agent environment is no longer stationary.

Also, Q-learning can only study discrete space while price and quantity are continuous

in actual situations. As Q-learning only represents a part of the artificial intelligence

algorithms, there is still great research potential for further improvement in the choice

of algorithms that better accord with real-world scenarios. Hettich (2021) has taken

the first step in using a more realistic algorithm. Hettich extends the experimental

design of Calvano et al. (2020) using Deep Q-Network that lies in the same value-based

category as Q-learning. Though Deep Q-Network still focuses on discrete space, the

algorithm has a much faster convergence rate to collusive prices.

In addition to assessing the risk of algorithmic collusion, several papers also propose

possible solutions to avoid collusive outcomes and increase competition in marketplaces

where decision-making algorithms are commonly adopted. From an artificial intelli-

gence perspective, Abada and Lambin (2020) suggest that policymakers may regulate

the market by requiring training to be performed at the individual level instead of at

the aggregator level. They also propose that regulators could intervene in the learning

process of algorithms by introducing agents that aim to maximize social welfare or

consumer welfare and guide other agents towards socially desirable outcomes. Using

their Q-learning algorithms, they prove that agents could learn to avoid collusive prices

when welfare-oriented agents are in the market. From a platform design perspective,

Johnson et al. (2020) propose two platform design rules, price-directed prominence

and dynamic price-directed prominence, aiming to steer demand towards sellers with

lower prices. These suggestions all provide unique insights.
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Contribution

The literature on decision-making algorithms is expanding. This paper contributes

to the experimental branch, extending the results of prior literature using reinforce-

ment learning algorithms that better accord with real scenarios. Instead of using

the value-based Q-learning algorithm as Calvano et al. (2020), Abada and Lambin

(2020), and Klein (2021), I build multi-agent algorithms that rely on the Natural

Policy Gradient method, a policy-based reinforcement learning algorithm, to simulate

simultaneous Bertrand and Cournot games with continuous action and state space in

different market structures. This paper discusses the implementations of the Natural

Policy Gradient method and shows that algorithms can learn to converge to Bertrand-

Nash or Cournot-Nash equilibria in simulated markets. This result resonates with the

theoretical analysis of Hambly et al. (2021), which proves the convergence to Nash

equilibrium in general-sum multi-agent policy gradient dynamics with a certain level

of noise, and echos the study of Shi and Zhang (2020) that shows policy gradient

dynamics converge to Nash equilibrium in concave Cournot games with either two

players or a linear price function.

To the best of my knowledge, this paper would be the first study of algorithmic

pricing and decision-making algorithms in continuous space while providing evidence

that algorithms can learn to reach competitive outcomes in certain contexts. The ex-

ceptions in algorithmic collusion would provide useful insights into designing regulatory

policies for decision-making algorithms.

The remaining part of the paper proceeds as follows. Section two introduces the

background of reinforcement learning and the Natural Policy Gradient method. Sec-
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tion three goes on to the experimental design of simulating simultaneous Bertrand

and Cournot competitions. Section four presents the impact of the Natural Policy

Gradient method on equilibrium outcomes and discusses robustness checks. Section

five concludes with a discussion of the study.

2 Background

This paper adopts the policy gradient method, which is a type of reinforcement learning

algorithm, to simulate Bertrand and Cournot competitions for the following reasons.

First, policy gradient methods can model the environment in continuous state and

action spaces. As price and quantity are continuous variables, policy gradient methods

are more appropriate than value-based reinforcement learning algorithms, such as Q-

learning and Deep Q-Network that prior researchers used in their studies, which need

to discretize the continuous action space to enumerate possible actions. Second, policy

gradient methods are more efficient in large state and action spaces as they directly

optimize policy, while the classic Q-learning indirectly extracts policy after estimating

the expected value of taking each action. Third, policy gradient methods have proven

to be useful and successful in a range of real-world applications (Peters and Schaal,

2006; Amari, 1998) and also served as the foundation of one of the most popular and

the state of the art reinforcement learning frameworks, the Actor-Critic methods.

There are several reasons for choosing to use the Natural Policy Gradient method.

First, it achieves better performance and a faster convergence rate compared with the

Vanilla Policy Gradient (Kakade, 2001). Second, it is among the most widely-used

policy optimization algorithms. Other mainstreams algorithms, such as Trust Region
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Policy Optimization and Proximal Policy Optimization, are generations and variants

of the Natural Policy Gradient method (Cen et al., 2021).

This paper discusses the implementations of policy-based Natural Policy Gradi-

ent in simultaneous Bertrand and Cournot competitions, showing the impact of the

Natural Policy Gradient method on equilibrium outcomes if all firms in the market

adopt the same algorithm to set price or quantity and do not intervene in the algorith-

mic decision-making process. The rest of this section contains a brief introduction to

reinforcement learning in general and the main categories of reinforcement learning,

including value-based and policy-based methods. The difference between these two

categories will become clear shortly.

2.1 Reinforcement Learning

Following the definition of Russell and Norvig (2020), a Markov Decision Process

(MDP) is a sequential decision problem for a fully observable stochastic environment

with a Markovian transition model and additive rewards. An MDP consists of a single

agent, a set of states st ∈ S that represent configurations of the environment, a set

of actions at ∈ A(st) that the agent can select, a transition function T (st, at, st+1) =

P (st+1|st, at) that maps st, at to st+1, and a reward function R(st, at) that defines the

value of picking an action at a state. The agent’s goal is to choose the action that

leads to the highest total reward.

In an unknown MDP environment, people use reinforcement learning that enables

agents to learn about optimal policy through trial-and-error. Similar to MDP, the

core of reinforcement learning includes agents, states, actions, and rewards. In each

iteration t = 0, 1, 2, ..., the agent observes the state st, takes an action at, progresses
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to the next state st+1, and receives a reward. The interaction between agent and

the environment is then repeated until convergence is reached. The agent follows a

predefined rule to find the optimal policy. Value-based and policy-based reinforcement

learning are two main approaches to optimize policy.

2.1.1 Value-based

In value-based reinforcement learning, agents estimate the value of state V (s) and

state-action pair Q(s, a) and pick the action that maximizes the value function. Bell-

man equations are used to characterize the optimal values:

V π∗(st) = max
at

Qπ∗(st, at) = max
at

∑
st+1

T (st, at, st+1)[R(st, at, st+1) + δV π∗(st+1)]

V π∗(s) represents the expected utility starting in s and acting optimally under

policy π. Qπ∗(s, a) is the expected utility starting from taking action a at state s

and acting optimally. δ is the discount factor. The optimal policy is defined as:

π∗(s) = argmaxa Q
π∗(s, a).

An example of a value-based approach is the Q-learning algorithm that learns

optimal strategy through updating Q-values. Using finite S and A, Q(s, a) can be

represented as a |S| × |A| matrix where each entry is the value of taking action a ∈ A

at state s ∈ S (Calvano et al., 2020). In each iteration, agents take actions and update

one cell in the matrix: Q(st, at) ← (1 − α)Q(st, at) + α[rt + δmaxat+1 Q(st+1, at+1)]

where α is the learning rate. Q-learning guarantees optimality so long as each entry

has been visited sufficiently many times. As Q-learning only updates one entry each

time, Q-learning has a slow learning process when S and A are large.
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2.1.2 Policy-based

Instead of estimating value functions and retrieving optimal policy from Q-values,

agents learn parametrized policies πθ by directly optimizing the expected returns with

respect to θ (Levine and Koltun, 2013). At each time step, the agent’s decision is

characterized by πθ(at|st) which represents probability distributions of actions over

states (Sutton et al., 1999). In each iteration, agents pick actions at according to πθ,

enter the next state st+1, and receive rewards r(at, st). Agents update their policy

parameters according to the gradient of long-term expected rewards (Sutton et al.,

1999). So better actions will be picked with a higher probability. Using gradient

ascent, agents find the optimal policy that maximizes their long-term total rewards:

η(θ) = Eτ∼πθ(τ)[r(τ)] = Eτ∼πθ(τ)[
∑

t r(at, st)] where τ is the trajectory under policy πθ.

The gradient ∇θη(θ) is defined as:

∇θη(θ) =

∫
∇θπθ(τ)r(τ) dτ

=

∫
πθ(τ)∇θ log πθ(τ)r(τ) dτ

= Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

≈ 1

N

N∑
i=1

∇θ log πθ(τ
(i))r(τ (i))

(1)

A standard update of policy parameter can be written as: θ ← θ+α∇θη(θ) where

α is the learning rate (Williams, 1992).

The Natural Policy Gradient is another popular policy-based method that achieves

better performance and a faster convergence rate. Instead of using the normal gradient,

the Natural Policy Gradient method follows the steepest direction with respect to the

Fisher information matrix that measures the curvature (Kakade, 2001). Therefore, the
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improvement of policy parameter in each step is written as:

θ ← θ + α∇θη̃(θ)

= θ + αF (θ)−1∇θη(θ)

(2)

where F (θ) is the Fisher information matrix defined as Eτ∼πθ(τ)[∇θ log πθ(a|s)∇θ log πθ(a|s)T ].

More details regarding the setup of the Natural Policy Gradient method are discussed

in the next section.

3 Experimental Design

3.1 Economics Environment

3.1.1 Bertrand

Consider a differentiated product market with N firms. Each firm i competes in

price pi and maximizes profits Ri(pi, p−i) = (pi − ci)q(pi, p−i), where q(pi, p−i) is the

demand function and ci is the marginal cost. A strategy profile p∗ = (p∗1, p
∗
2, ..., p

∗
n)

is a Bertrand-Nash equilibrium if for every firm i and any other p̃i firm i can choose,

Ri(p
∗
i , p

∗
−i) ≥ Ri(p̃i, p

∗
−i). In the baseline experiment, assume for linear demand and

constant and identical marginal costs.

3.1.2 Cournot

Consider a homogeneous product market with N firms. Each firm i chooses its produc-

tion level qi ≥ 0 simultaneously for infinitely repeated periods. The profit for each firm

is denoted as Ri(qi, q−i) = p(qi, q−i)qi − Ci(qi) where p(qi, q−i) is the inverse demand
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function and Ci(qi) is the cost of producing qi.

Following the standard assumption in the literature (Frank and Quandt, 1963,

Szidarovszky and Yakowitz, 1977), I focus on Cournot competitions where the following

conditions hold:

1. The price function is strictly decreasing, twice-differentiable, and concave

2. The cost function is strictly increasing, twice-differentiable, and convex

Under the assumptions where p′(qi, q−i),−C ′
i(qi) < 0 and p′′(qi, q−i),−C ′′

i (qi) ≤ 0,

there is an unique Nash equilibrium (Szidarovszky and Yakowitz, 1977).

For the baseline experiment, consider a symmetric Cournot competition where the

market price is denoted as p(qi, q−i) = a− b(
∑

i qi) and Ci(qi) = cqi (a, b, c ∈ R).

3.2 Natural Policy Gradient Setup

Following the standard setup of a stochastic policy in continuous space, I use the

Natural Policy Gradient with a Gaussian policy to characterize the action ai ∼ πθi

firm i chooses. The policy is defined as: πθ(a|s) = 1√
2πσθ(s)

exp(− (a−µθ(s))
2

2σθ(s)2
), where µθ

denotes the mean of firm’s action. The action is reparametrized by the mean of action

as a = µθ(s)+σθ(s)ξ, where ξ ∼ N(0, 1) (Heess et al., 2015), and the action is rectified

to be non-negative (Shi and Zhang, 2020). In each iteration, firm i chooses ai, receives

reward ηi, and updates θi according to the natural gradient. Following the derivation

of gradient in 1, the gradient with respect to the policy parameter θ can be written

as: ∇θiηi(θi) =
1
N

∑N
i=1∇θi log πθi(ai)Ri(ai), where Ri(ai) is the profit, πθi(ai) is the

parametrized policy for firm i.
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Therefore, in each step, the policy parameter is updated as:

θi ← θi + αF (θ)−1(
1

N

N∑
i=1

∇θi log πθi(ai)Ri(ai))

= θi + αF (θ)−1 1

N

N∑
i=1

(ai − θi)
2

σ2
i

Ri(ai)

(3)

Algorithm 1 below shows the pseudocode of the algorithm used for simulations.

Algorithm 1 Natural Policy Gradient for Cournot competition with linear demand

Initialize θi, σi, learning rate α, a, b, marginal cost ci, stop time T
for t = 0, 1, 2, ...T do
Pick qi ∼ N(θi, σi)
Calculate p = a− b(

∑
i qi) and Ri(qi) = (p− ci)qi

Evaluate gradient ∇θηi(θ) =
1
N

∑N
i=1∇θi log πθi(qi)Ri(qi)

Update policy parameter θi ← θi + α ˆF (θi)−1∇θiηi(θi)
end for

4 Outcomes and Result Analysis

4.1 Baseline Experiments

Consider symmetric Bertrand duopoly and oligopoly with three firms and linear de-

mand functions. Assume q(pi, p−i) = 0.5− pi +0.5
∑

p−i and c = 0.5. Figure 1 tracks

the learning process of the Natural Policy Gradient method with learning rate α = 0.08

and standard deviation σ = 0.08 for each firm in the stated environments. The dot-

ted red lines represent the Bertrand-Nash equilibria. In both duopoly and oligopoly

environments, the algorithm learns to converge to the Bertrand-Nash equilibrium.
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Figure 1: The learning process of the Natural Policy Gradient method in symmetric
Bertrand duopoly (left) and oligopoly (right) environments

For symmetric Cournot competitions, consider the two-player and three-player

cases with linear price functions p(qi, q−i) = 2 −
∑

i qi and constant marginal cost

c = 0.5. Figure 2 displays the quantities chosen by the Natural Policy Gradient

method with learning rate α = 0.08 and standard deviation σ = 0.08 for each firm in

each iteration. As expected, the convergence to Cournot-Nash equilibrium is verified

in both Cournot duopoly and oligopoly environments.

Figure 2: The learning process of the Natural Policy Gradient method in symmetric Cournot
duopoly (left) and oligopoly (right) environments

These simulated markets are simplified versions of real-world scenarios contain-

ing both algorithmic and non-algorithmic sellers. As developing and training high-
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performance algorithms to automate decision-making processes is time-consuming and

costly for individual sellers, it is very likely that most algorithmic sellers on Amazon,

eBay, and other e-commerce platforms choose to employ existing optimization soft-

ware built and designed by professional experts using reinforcement learning. Sellers

have incentives to pay for these repricing tools or price optimization products to make

timely adjustments to market changes and gain competitive advantages, such as win-

ning the Amazon Buy Box (Chen et al., 2016). Based on google search data, each

of the most recommended Amazon price optimization products has hundreds or even

thousands of users.2 While algorithmic sellers can customize and configure their own

features on the repricing platform, their algorithms share exactly the same architecture

as those who also choose the same platform. Therefore, the simulated markets here

can model the markets with algorithmic sellers who produce similar but differentiated

products and use identical pricing software.

The convergence to pure strategy Nash equilibrium of the Natural Policy Gradient

method suggests that algorithmic sellers who only use policy gradient based decision

optimization tools to set price or quantity would adopt Nash strategies after a period

of time, and algorithmic collusion does not exist under this setup.

4.2 Why Different from Q-learning?

The Natural Policy Gradient method leads to a completely different result from what

prior researchers get using Q-learning. Instead of approaching supra-competitive equi-

librium and sustaining collusive outcomes through reward and punishment strategies,

2For instance, over 2000 Amazon sellers choose RepricerExpress, and more than 500 firms use
Feedvisor. Intelligence Node, which mainly targets retailers and category leaders, has hundreds of
users worldwide.
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the simulations in this paper identify the exceptions that would not lead to algorith-

mic collusion. Here are some possible reasons for getting the opposite result. First,

policy gradient methods are theoretically more likely to reach competitive outcomes

than Q-learning. While there is no general consensus among computer scientists and

mathematicians that multi-agent policy gradient algorithms are guaranteed to con-

verge to Nash equilibrium in continuous action and state space (Mazumdar et al.,

2019), some researchers prove the convergence of policy gradient methods in general-

sum multi-agent games under certain conditions. The findings in this paper resonate

with recent studies of Hambly et al. (2021) and Shi and Zhang (2020). Hambly et al.

(2021) demonstrate the global linear convergence for a class of linear-quadratic games

with a certain level of noise in the dynamic system. Shi and Zhang (2020) derive that

policy gradient dynamics converge to Nash equilibrium in concave Cournot games with

either two players or a linear price function. Both of these studies provide theoretical

support for this paper. The case for multi-agent Q-learning with ϵ-greedy exploration

in general-sum games is different as no theoretical convergence guarantee has been

verified.

Second, as Abada and Lambin (2020) suggest, seemingly collusive outcomes learned

by Q-learning originate in imperfect exploration that lies in the nature of Q-learning.

As Abada and Lambin manually force the algorithm to explore hardly explored states

and the Nash equilibrium, firms deviate from the supra-competitive outcome and reach

more competitive strategies instead. Therefore, this study and their result demonstrate

that the choice of reinforcement learning algorithm and the corresponding exploration

strategy significantly impact the equilibrium outcomes.

16



4.3 Robustness Checks

This section reports robustness checks. Figure 3 and 4 consider asymmetries in

marginal costs. All parameters remain the same as the baseline experiment except

that marginal cost varies across firms. Specially, I use c1 = 0.4 and c2 = 0.8 for the

duopoly case and c1 = 0.2, c2 = 0.4, and c3 = 0.8 for the three-player game. Figure

5 shows the simulations of Bertrand competitions with logit demand and constant

marginal cost c = 1. The logit demand for product i is defined as qi =
exp

2−pi
0.25∑

j exp
2−pj
0.25

+1
.3

The dotted red lines in the figures below represent the Nash equilibria. The result of

this paper holds for markets with asymmetric costs or logit demand.

Figure 3: The learning process of the Natural Policy Gradient method in Bertrand duopoly
(left) and oligopoly (right) environments with asymmetric marginal costs

Figure 4: The learning process of the Natural Policy Gradient method in Cournot duopoly
(left) and oligopoly (right) environments with asymmetric marginal costs

3This demand function is the one that Calvano et al. (2020) use for their baseline experiment.
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Figure 5: The learning process of the Natural Policy Gradient method in Bertrand duopoly
(left) and oligopoly (right) environments with logit demand

5 Conclusion

In this paper, I take an experimental approach to explore the impact of decision-

making algorithms on equilibrium outcomes in simultaneous Bertrand and Cournot

competitions. Using the Natural Policy Gradient method, which is a type of policy-

based reinforcement learning algorithm, I simulate repeated Bertrand and Cournot

competitions in different market structures and observe the interactions between au-

tonomous decision-making agents. The computer-simulated markets in this study can

be considered as simplification of real-world online marketplaces involving algorith-

mic sellers who use policy gradient based decision-making software to optimize selling

strategies. Through simulations, I show that decision-making algorithms based on the

Natural Policy Gradient method consistently converge to Nash equilibria.

As far as I am aware, this is the first study in algorithmic collusion that employs

algorithms other than value-based methods and identifies situations where algorithms

can learn to reach competitive outcomes. Compared with value-based reinforcement

learning algorithms, including Q-learning and Deep Q-Network that discretize action
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space, the Natural Policy Gradient method studies continuous action and state space

that better accords with real-world situations. The exceptions in algorithmic collusion

would also provide helpful insights into developing regulatory policies for decision-

making algorithms that carry the risk of reaching supra-competitive outcomes and

sustaining tacit collusion.

The convergence to Nash equilibria of policy gradient dynamics combined with

the collusive behaviors of Q-learning algorithms illustrates that the risk of algorith-

mic collusion depends on various factors, including the choice of machine learning

algorithms. Compared with decision-making algorithms that are mainly based on

Q-learning, optimization algorithms with policy gradient methods are less prone to

algorithmic collusion. A theoretical generalization of this study and the analysis of

the convergence properties of multi-agent Q-learning are left for future research.

One limitation regarding the Natural Policy Gradient method is that the gradient

estimator suffers from large variance, slowing down the learning process. Variants of

Actor-Critic methods could possibly mitigate this problem and achieve similar results

with a faster convergence rate.
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