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Abstract

Air quality in the United States has improved substantially over the last few decades.

However, there are concerns that climate change may undermine this progress through

an increase in the incidence and severity of wildfires. Using satellite-derived data, I

examine census tract-level wildfire smoke exposure in the contiguous United States and

its relationship to air pollution. First, I document that average annual wildfire smoke

exposure days increased substantially in the U.S. between 2006 and 2020. Second,

I show that rural communities, lower-income census tracts, and areas with higher

proportions of children are disproportionately exposed to more wildfire smoke overall.

However, smoke exposure-demographic patterns are changing. Urban census tracts,

poorer census tracts, and communities with higher proportions of Hispanic Americans

are positively correlated with growth in smoke exposure over time. Third, I estimate

the relationship between smoke exposure days and average annual air pollution levels.

I find that annual PM2.5 concentrations in the U.S. between 2006 and 2016 would

have been 7% lower on average in the absence of wildfire smoke. Back-of-the-envelope

calculations suggest that wildfire smoke exposure reduces aggregate life expectancy in

the United States by 13.128 million life-years each year.

∗Special thanks to Jonathan Colmer (thesis advisor), Ian Hardman, and Jay Shimshack for all their thoughts and comments
on this paper. Special thanks to Edgar Olsen, William Johnson, and Bill Shobe for all their support in my undergraduate
career.



1 Introduction

Air pollution from wildfires is increasing, which threatens to undermine the progress the

U.S. has made over the past few decades in improving air quality (Burke et al., 2021; McClure

and Jaffe, 2018; Colmer et al., 2020). Recent and dramatic events in California and much of

the western U.S. have raised awareness of the “Smoke Days” phenomenon. These are days

in which smoke from wildfires diffuses into the atmosphere, reducing air quality, and in some

instances, turning the sky orange.

Wildfire smoke presents a significant threat to human health and quality of life. Several

studies link wildfire smoke exposure to adverse health outcomes, such as increased respiratory

and cardiovascular mortality and morbidity (Adetona et al., 2016; Reid et al., 2016; Xu et

al., 2020). Some evidence suggests that air pollution from wildfire smoke is more harmful

to human health than air pollution from other sources (Aguilera et al., 2021; Wegesser et

al., 2009), but this topic is relatively understudied (Kochi et al., 2010). Economists have

quantified the costs of smoke-induced mortality (Burke et al., 2021; Miller et al., 2017),

smoke-induced morbidity (Dittrich and McCallum, 2020; Kochi et al., 2010; Miller et al.,

2017), losses in labor earnings (Borgschulte et al., 2019), and reductions in self-reported life

satisfaction (Jones, 2017, 2018; Richardson et al., 2012). By all estimates, the costs associated

with wildfire smoke far exceed the costs associated with the wildfires themselves. This is

because smoke, and the air pollutants within, can travel far distances from the location of

the fires due to wind, thereby affecting a much wider population than which the fire directly

affects (Reisen et al., 2015).

Wildfires are becoming increasingly prevalent in the United States. Total acres burned

in the U.S. between 2003 and 2020 is nearly double the area burned between 1985 and 2002,

and annual fire suppression costs now exceed $2 billion (NIFC, 2020). The environmental

science literature documents this phenomenon thoroughly and provides a few important

explanations for the rise in American wildfire activity since the 1980’s. These reasons include

climate (Bowman et al., 2020; Westerling et al., 2006; Westerling, 2016) and anthropogenic

climate change (Abatzoglou and Williams, 2016; Goss et al., 2020; Williams et al., 2019),

the expansion of the Wildland-Urban Interface (Burke et al., 2021; Radeloff et al., 2018;

Syphard et al., 2007), and a history of fire suppression beginning in the late 19th century

(Marlon et al., 2012; Miller et al., 2009; Parks et al., 2015; Steel et al., 2015). Of all these

reasons, climate is the most significant (Abatzoglou and Williams, 2016; Williams et al.,

2019). The hotter and drier conditions associated with human-caused climate change have

made wildfires more frequent, more severe, and have extended the wildfire season.

This paper explores how exposure to wildfire smoke is distributed across the United
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States and estimates the relationship between wildfire smoke and fine particulate matter air

pollution (PM2.5). I do this using high resolution, remotely-sensed satellite smoke plume

and annual PM2.5 data.

First, I examine how smoke exposure is distributed across space and how it has evolved

over time. I find that the average census tract experiences 27 smoke days a year, or 110

annual smoke hours. I look at overall wildfire smoke exposure, but I also distinguish between

mild and intense smoke exposure. The northern and western regions of the country get the

most smoke and the most intense smoke. Furthermore, I find that wildfire smoke exposure

is a growing issue. Between 2006 and 2020, average exposure to wildfire smoke more than

doubled, with most regions exhibiting a similar pattern.

Second, I explore how wildfire smoke exposure is distributed across socioeconomic and

demographic groups. I find that rural census tracts, lower income census tracts, and census

tracts with higher proportions of children endure a disproportionate amount of annual smoke

exposure. Unlike traditional sources of air pollution, wildfire smoke does not appear to

disproportionately affect Black or Hispanic communities. However, this pattern is changing.

Urban census tracts, higher poverty census tracts, and census tracts with higher proportions

of Hispanic Americans are associated with the highest growth in smoke exposure over time.

Third, I evaluate the relationship between wildfire smoke and average annual PM2.5 ex-

posure. I estimate that, on average, an additional day of smoke is associated with a 0.017

µg/m3 increase in annual average PM2.5 concentrations. Back-of-the-envelope calculations

suggest that this pollution burden associated with average wildfire smoke exposure reduces

life expectancy by 0.04 life-years per American each year, 13.128 million life-years in total.

Intense smoke exposure episodes are associated with more substantial reductions in air qual-

ity. Taken at face value, my estimates indicate that annual average PM2.5 concentrations

would have, on average, been 7% lower in the absence of wildfire smoke.

I contribute to the existing literature in several ways. First, I build upon a previously-used

method for identifying smoke exposure that relies on remotely-sensed, satellite smoke plume

data. Other studies have used satellite smoke plume data for identifying smoke exposure

(Borgschulte et al., 2019; Burke et al., 2021; Miller et al., 2017), but most only define smoke

exposure as binary. However, not all smoke exposure is equal. My approach distinguishes

annual smoke exposure days of varying intensity. Other work has used chemical transport

models (CTM’s) to simulate wildfire smoke dispersion (Jiang and Enki Yoo, 2019; O’Dell et

al., 2019). While CTM’s provide important information about smoke exposure that satellite

smoke data does not, they require advanced consideration for fuel consumption parameters,

emissions estimates, and atmospheric chemistry. Wildfire smoke analyses that use CTM’s

tend to be limited to regional and seasonal analyses. I evaluate wildfire smoke exposure
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across the entire contiguous U.S. between 2006 and 2020. As such, this paper provides a

more systematic analysis of wildfire smoke exposure.

Second, I advance our understanding of who in society endures disproportionate exposure

to wildfire smoke. This builds on and refines a literature documenting other forms of air

pollution disparities (Colmer et al., 2020). In general, nationwide analyses of smoke exposure

and demographics have thus far been limited (Burke et al., 2021).

Third, this paper provides the first systematic analysis of wildfire smoke’s relationship to

average annual air pollution exposure in the United States. I use PM2.5 concentrations that

are derived from satellite data and chemical transport models. The satellite data provides

annual PM2.5 measurements on a 0.01◦ × 0.01◦ grid for ∼ 8.6 million distinct locations -

enough spatial resolution to provide PM2.5 data for all census tracts in the contiguous United

States. Previous scholarship has used ground monitor data when estimating the relationship

between wildfire smoke and PM2.5 levels (Borgschulte et al., 2019; Brey et al., 2018; Burke

et al., 2021; McClure and Jaffe, 2018; Miller et al., 2017). Monitor data provides an accurate

depiction of ground-level PM2.5 concentrations, but only for a small number of locations.

Only 6% of counties in the U.S. have frequently active air pollution ground monitors, mostly

in urban areas, covering less than half the national population (Colmer et al., 2020).1

This paper proceeds as follows. Section 2 outlines the data. Section 3 describes smoke

exposure in the U.S., spatially, temporally, and demographically. Section 4 examines the

relationship between smoke and air pollution. Section 5 concludes.

2 Data

2.1 Wildfire Smoke Data

Data on wildfire smoke comes from the National Oceanic and Atmospheric Administra-

tion’s (NOAA) Hazard Mapping System (HMS)2.

The HMS contains daily wildfire smoke plume data going back to August 2005. Seven

NOAA and NASA satellites orbiting at different angles and times of day produce 1 km

resolution images of smoke plumes above the contiguous United States. Trained HMS satel-

lite analysts then finalize the smoke shapefiles by hand drawing the contours and apparent

density of each smoke polygon (Rolph et al., 2009; NOAA, 2021). The final product is a

1As a robustness check, I incorporate ground monitor PM2.5 data into the analysis and get comparable
results. This mitigates the potential concern that satellite-derived smoke and pollution data may be mechan-
ically associated, rather than representing the relationship between wildfire smoke and PM2.5 concentrations
on the surface.

2https://www.ospo.noaa.gov/Products/land/hms.html#data
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geocoded smoke shapefile with the approximate start and end times of each smoke plume on

that day. The HMS also started to report plume density starting in 2007, with qualitative

denotations of Thin, Medium, and Thick smoke. The approximate smoke concentrations

in micrograms per cubic meter are 0-10 µg/m3 , 10-21 µg/m3, and 21-32 µg/m3 for each

category.

NOAA’s HMS is one of the best sources of wildfire smoke data in the United States with

its large spatial extent and easy access. For these reasons, several of the past papers on

wildfire smoke exposure have used HMS smoke data (Borgschulte et al., 2019; Burke et al.,

2021; Miller et al., 2017), instead of using more complex and demanding chemical transport

models (CTM’s) to simulate the dispersion of wildfire smoke (Jiang and Enki Yoo, 2019;

O’Dell et al., 2019).

Despite its vast geographic extent and relative ease-of-use, there are a few shortcomings

associated with HMS smoke data. Most importantly, HMS data does not distinguish smoke

plumes from wildfires, prescribed burns, or agricultural fires (Rolph et al., 2009; NOAA,

2021). Given that smoke plumes can cover massive amounts of area, travel far from their

source fires, and mix with other smoke plumes, linking individual smoke plumes to source

fires is nearly impossible. The fact that satellite analysts cannot distinguish smoke by source

may lead some to believe that HMS data overestimates smoke attributable to wildfires.

However, HMS data more likely underestimates wildfire smoke due to challenges associated

with identifying smoke plumes under nighttime, cloudy, or snowy conditions (Rolph et al.,

2009; NOAA, 2021). Furthermore, the majority of acres burned in the U.S. comes from

wildfires, and acres burned from prescribed and agricultural fires are relatively low and

annually consistent (Burke et al., 2021; NIFC, 2020) 3. Therefore, HMS data still provides

the best available data on wildfire smoke exposure even though the raw data is not able to

link smoke plumes to specific wildfires or other specific sources.

Additional limitations to satellite smoke data are important to mention. Satellite-based

images cannot distinguish smoke plume height, and they can only imprecisely differentiate

plume density (Burke et al., 2021). Denser plumes and those that are lower in the atmo-

spheric column present the greatest threats to air quality. There is also growing evidence

that smoke age is an important characteristic when considering the effect on air pollution

and the associated health outcomes (Brey et al., 2018; O’Dell et al., 2020). HMS data does

not distinguish the age of smoke plumes.

The above caveats notwithstanding, I use the HMS satellite smoke plume data to calculate

annual smoke exposure for every census tract in the contiguous United States (∼ 65, 000)

3Prescribed burned acres have increased only the the Southeast U.S.. This region is exposed to less
smoke exposure than other regions.
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between 2006 and 2020. The approximate sample size is 970,000 census tract-years (Table 1).

I identify overall smoke exposure primarily with the use of “smoke days”. This variable

represents the total number of days in which there is any overhead smoke above a given

census tract during a given year. I also look at a more granular measurement of annual

smoke exposure with the use “smoke hours” (the difference between the end and start times

of each visible smoke plume).

Lastly, I allow for differences in intensity of wildfire smoke exposure. I do this by identi-

fying annual “thin smoke days”, “medium smoke days”, and “thick smoke days” according

to the HMS’s classifications of Thin, Medium, and Thick smoke. Priority goes to the thicker

density in the case that there are two overhead smoke plumes with different densities on the

same day. Thus, if there is a thin plume and a thick plume above the same census tract

on the same day, I classify that day as a “thick smoke day”. I incorporate density into the

smoke hours variables as well.

2.2 PM2.5 Data

Data on PM2.5 concentrations comes from both satellite and ground monitor sources. The

satellite-based PM2.5 data comes from Meng et al. (2019). They derive annual average PM2.5

concentrations across North America on a 0.01◦ X 0.01◦ grid, using Aerosol Optical Depth

(AOD) from NASA satellites, as well as from the GEOS-Chem chemical transport model.

Colmer et al. (2020) map this pollution data to same U.S. census tracts that I use in this

paper. The original data includes annual average PM2.5 concentrations for each census tract

between 1981 and 2016. I restrict the data to include observations between 2006 and 2016,

for a total sample size of over 714,000 census tract-years (Table 1). The large geographic

extent of the satellite data allows for a nationwide analysis of the widespread pollution effects

of wildfire smoke.

The primary source of PM2.5 data and the smoke data come from satellite products.

This raises concerns about the degree to which the relationship between these two products

will provide information about ground-level PM2.5 concentrations. The potential concern

arises because both the smoke and pollution data are derived from Aerosol Optical Depth

(AOD). Regressing two AOD-based sources of data runs the risk of mechanical correlations

that do not reflect particulate pollution at surface levels. To explore this, I incorporate

ground monitor pollution data into the analysis and compare results with the satellite data.

The ground monitor data comes from the Environmental Protection Agency’s Air Quality

System (AQS) and contains 24-hour PM2.5 concentrations for all monitors throughout the

United States between 1997 and 2016. I apply several sample restrictions. I restrict the data
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to include monitors only from the contiguous U.S. and monitors that have data in every

year between 2006 and 2016. I also require that each monitor has at least fifty 24-hour

observations in each year, which is a reasonably sufficient sample size to derive an annual

average. Finally, I account for seasonality. I require that for each monitor-year, there are a

sufficient number of observations in each of the four seasons (each season contains at least

10% of all observations associated with that monitor-year). Once all restrictions are applied,

the sample includes data from 307 ground monitors in forty different states, for a sample

size of 3,300 census tract-years (Table 1).

2.3 Weather Data

I incorporate weather data to address the fact that both wildfire smoke exposure and

overall PM2.5 levels are correlated with weather. The weather data, updated from Schlenker

and Roberts (2009), comes from the PRISM Climate Group. This data provides daily

minimum and maximum temperature (in degrees Celsius) as well as total precipitation (in

millimeters) on a 2.5 x 2.5 mile grid for the contiguous United States between 1950 and 2020.

To ensure that as many census tracts as possible are assigned a value, I rasterize the spatial

grid. I then derive daily-mean temperature by taking the arithmetic mean of daily minimum

and maximum temperatures. Finally, I construct annual measures of average daily-mean

temperature and total precipitation at the census tract-level between 2006 and 2016, for a

total of approximately 710,000 census tract-years.

2.4 Demographic Data

Demographic data comes from the 2010 Decennial Census and the American Community

Survey. The Decennial Census data provides information on population, race, ethnicity, and

age-related variables. The American Community Survey includes economic characteristics

such as income per capita and the poverty rate. Colmer et al. (2020) map the demographic

data to the same census tracts that I use in this paper.

3 The Distribution of Wildfire Smoke Exposure in the

United States

3.1 Smoke Exposure Across Space and Time

Table 1 shows that the average census tract in the United States experiences 27 smoke

days a year. Most of such wildfire smoke exposure is mild, with the the majority of smoke
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days being of category Thin. Exposure to intense wildfire smoke (medium and thick smoke

days), averages around five days a year.

Table 2 displays average smoke exposure days for the nine climate regions of the contigu-

ous United States 4. The Northern Rockies and Plains and the Upper Midwest endure the

most exposure to wildfire smoke, overall and intense. Furthermore, the Northwest, West, and

Ohio Valley regions experience a relatively high amount of intense smoke exposure. Figure 1

offers an extensive visualization of the spatial distribution of annual smoke days throughout

the contiguous U.S.

I also examine how exposure to wildfire smoke has changed over the past fifteen years.

As with wildfires themselves, smoke has progressively become more of an issue in the United

States. Between 2006 and 2020, average annual smoke days across the country more than

doubled, increasing by an average rate of 1.33 additional smoke days per year (Figure 2a).

This trend in more frequent smoke exposure is evident in most regions throughout the

country. As Figure S3 shows, all regions except for the Southeast exhibit noticeable increases

in average annual smoke exposure over the sample period. In Figure S1, we are able to see

that much of the country is “smokier” in the second half of the sample period versus the

first half.

There is evidence that smoke exposure from wildfires is becoming more intense in addition

to more frequent. Figure 2b shows that the proportion of smoke exposure days that involve

thick smoke has increased over time. Thus, the average smoke day itself has become more

severe.

3.2 Smoke Exposure and Demographics

To estimate the correlation between smoke exposure and demographics, I estimate the

following bivariate regression model:

Smokec = β1Demographicc + εc

In one estimation, the dependent variable, Smokec represents the mean number of smoke

days in census tract c from 2006 through 2020. This gauges overall smoke exposure. In

another estimation, Smokec is the log change in smoke days between 2006 and 2020 for

census tract c. This represents the growth rate in smoke exposure.

The independent variable, Demographicc, represents a demographic for census tract c,

recorded in the 2010 Census. These variables include population, race/ethnicity characteris-

4For more information, see:
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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tics, age-related variables, income per capita, the poverty rate, and urban versus rural census

tracts.

Figure 3a shows that, on average, smoke exposure is positively associated with rural

census tracts, census tracts with higher proportions of children (< 18 years of age), census

tracts that have a larger White population, and census tracts that are lower income. This

differs from patterns between demographics and more traditional sources of PM2.5, to which

Black, Hispanic, and urban communities typically get the most exposure (Colmer et al.,

2020).

However, Figure 3b shows noticeably different correlations with the growth rate in smoke

exposure. On average, smoke exposure is increasing more quickly in urban census tracts,

higher poverty census tracts, and census tracts with a larger Hispanic population. One pos-

sible explanation for this is that the West and Southwest regions of the U.S. saw substantial

increases in smoke exposure between 2006 and 2020 (Figure S3).

4 The Relationship between Wildfire Smoke and PM2.5

Concentrations

Using census tract by year data, this section examines the average relationship between

annual PM2.5 concentrations and annual wildfire smoke exposure. I incorporate census tract-

level PM2.5, smoke, and weather data between the years 2006 and 2016.

4.1 Empirical Specification

This paper uses regression analysis to quantify the average relationship between annual

smoke exposure and annual average PM2.5. Given that measured air pollution levels may

display geographic patterns, I specify a model that analyzes variation over time within the

same census tracts. The model, in general terms, is as follows:

PM2.5cst = β1Smokecst +Weathercst + αc + δst + εcst

The outcome variable, PM2.5cst, represents the annual average concentration of PM2.5,

in micrograms per cubic meter, for census tract c, in state s, in year t. In some estimations,

I use only the satellite-based PM2.5 data. In other regressions, I compare results between

the satellite and ground monitor data. This analysis of wildfire smoke’s relationship to air

pollution using data from both satellite and ground monitor sources is the first of its kind.

The treatment variable is Smokecst, which represents the annual smoke coverage above

8



census tract c, in state s, in year t. The primary treatment variable for overall smoke exposure

is smoke days, although smoke hours provides an alternative temporal measurement. I also

specify models that distinguish smoke exposure by intensity. For this, I use the HMS’s

classification of Thin, Medium, and Thick smoke. Priority goes to the thicker density in

the case of spatial and temporal overlap, so these categories are mutually exclusive. No

study before has specified the treatment of wildfire smoke with varying temporal or intensity

measurements.

The model includes several control variables. To account for the fact that both wildfire

smoke and pollution concentrations may be correlated with the weather, I control for tem-

perature and precipitation. Specifically, the variables associated with Weathercst are annual

average daily-mean temperature (in degrees Celsius) and annual total precipitation (in mm).

The main threat to identification is omitted variable bias. Both smoke exposure and

overall air pollution exhibit geographic patterns. To account for all time-invariant unob-

served heterogeneity, I include census tract fixed effects, αc. These control for all omitted

variables that vary across census tracts but not across time. For example, rural census tracts

tend to get the most smoke exposure but the least overall air pollution. The opposite is true

for urban census tracts given their geographic location and the fact that cities contain more

anthropogenic sources of particulate pollution. Failing to control for omitted variables as-

sociated with rural versus urban census tracts would likely result in downward bias in the

coefficient of interest. Census tract fixed effects control for all other time-invariant omitted

variables as well.

Smoke exposure and PM2.5 concentrations may also be correlated with omitted variables

across time. To address this concern, I include state-by-year fixed effects, δst. This con-

trols for all time-varying confounding factors that affect all census tracts equally within the

same state. Examples include forest management policy, state air pollution regulations, and

general economic activity.

4.2 Results

Table 3 reports estimates of the relationship between annual smoke exposure and annual

average PM2.5 concentrations using the satellite data products. In column (1) I estimate

that, on average, an additional day of smoke is associated with a 0.017 µg/m3 increase in

annual PM2.5 concentrations. This is 1.3% of the annual (within) standard deviation. This

estimate is similar to Borgschulte et al. (2019), who estimate the relationship between wildfire

smoke and annual PM2.5 concentrations using ground monitor data. Taking the results at

face value, PM2.5 concentrations would have been 7% lower in the absence of wildfire smoke.
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Back-of-the-envelope calculations suggest that average annual smoke exposure is associated

with a reduction in life expectancy by 0.04 life-years per person each year, which equates to

13.128 million American life-years lost per year (Ebenstein et al., 2017; AQLI, 2021).5 This

is far greater than the annual loss of life associated with fires themselves (USFA, 2021).

In column (2) I distinguish between intense smoke exposure and mild exposure. I es-

timate that thick and medium smoke days are associated with more substantial increases

in air pollution levels than days with thin smoke. Most smoke exposure episodes are mild

(Table 1). However, understanding the pollution effects of intense wildfire smoke exposure

is increasingly important, as trends indicate that annual smoke exposure from wildfires is

becoming more severe in addition to more frequent. (Figure 2b).

Columns (3) and (4) replicate the analysis in columns (1) and (2) for smoke hours. When

evaluated at the mean, the smoke hour estimates are smaller. This suggests that the number

of exposures matters more than the duration of exposures.

As discussed, the satellite data products are both derived in part from raw Aerosol

Optical Depth data. Consequently, one may be concerned that the estimated relationship

captures a mechanical correlation, rather than the relationship between wildfire smoke and

PM2.5 exposure on the ground. To address this concern, I re-estimate the relationship using

using EPA ground monitor data. Table 4 shows that the findings between the satellite and

ground monitor data are similar across all models.

5 Conclusion

This paper reiterates the importance of addressing wildfire smoke exposure while also

offering new insight into its full effects. I provide detailed information on the geographic

and demographic distribution of smoke exposure, which has thus far been limited. Using

satellite-derived PM2.5 data, I provide the first nationwide analysis of the far-reaching air

pollution effects from wildfires. The pollution burden associated with wildfires is a serious

problem, likely resulting in substantial reductions in aggregate life expectancy each year,

per back-of-the-envelope calculations. I also estimate that in the absence of wildfire smoke,

counterfactual PM2.5 concentrations would have, on average, been 7% lower, suggesting that

wildfires are a small, but non-trivial component of overall PM2.5 exposure. This analysis also

shows that exposure to wildfire smoke in the United States is growing - a likely consequence

of climate change. If trends continue as climate scientists predict, wildfires will become a

5Multiplying by the national average of 27 annual smoke days equals a 0.449 µg/m3 increase in average
annual PM2.5 exposure. Using the referenced study for the basis of my calculation, I equate the smoke-related
increase in annual PM2.5 to reductions in life expectancy.
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major threat to American air quality on a national scale.

The problem of wildfire smoke exposure demands greater consideration given the dispar-

ities we currently see and how these patterns are changing. The fact that smoke dispropor-

tionately affects communities with large percentages of children and low-income people is

concerning, as these are two vulnerable subpopulations to pollution damages. Trends in the

growth of smoke exposure are also concerning. Evidence from this paper shows that smoke is

affecting urban population centers at an increasing rate, which suggests the economic dam-

ages from wildfire smoke may be increasing rapidly as well. My findings indicate that the

returns to investing in wildfire management may be greater than previously thought. If we

fail to account for the economic damages and distributional considerations associated with

wildfire smoke exposure in cost-benefit analysis, then we will substantially underestimate

the returns to wildfire mitigation policies.

The results from this study raise a number of questions for future research. The use of

atmospheric or chemical transport models to simulate smoke dispersion could help to fill

important gaps associated with the satellite-based smoke plume data. Specifically, models

that focus on smoke height and smoke age would offer important information about the air

pollution effects of wildfire smoke. NOAA’s HYSPLIT is one of several CTM’s which offer

promising new approaches to simulating wildfire smoke dispersion on a large spatial and

temporal scale (Brey et al., 2018; Stein et al., 2016). In addition, further research on im-

proving estimates of total wildfire-specific air pollution would be beneficial. Region-specific

and year-specific estimates of wildfire PM2.5 would be particularly interesting. Having ac-

curate measurements for total wildfire PM2.5 is also important when measuring costs via

dose-response functions, but even this method of assessing economic damages requires ad-

ditional consideration. The growing evidence that wildfire PM2.5 is more harmful to human

health than PM2.5 from other sources suggests that dose-response functions specifically for

wildfire PM2.5 might be necessary.
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Tables

Table 1: Summary Statistics

(1) (2) (3)
Mean Std. Dev. Observations

Air Pollution Variables

Satellite (µg/m3) 9.224 2.204 714,659

Ground Monitor (µg/m3) 9.916 1.980 3,366

Smoke Variables

Smoke Days 27.059 11.698 974,985

Thin Smoke Days 22.711 9.331 779,988

Medium Smoke Days 4.566 2.814 779,988

Thick Smoke Days 1.782 1.756 779,988

Smoke Hours 110.647 50.159 974,985

Thin Smoke Hours 93.921 39.471 779,988

Medium Smoke Hours 16.989 11.207 779,988

Thick Smoke Hours 6.173 6.500 779,988

Notes: The pollution variables are averaged across all census tracts for the years 2006-2016.

The smoke variables are averaged across all census tracts for the years 2006-2020. Density-

specific smoke variables are averaged across all census tracts for the years 2008-2020, not

including 2009 since density is not reported at all in that year. I include between-census-tract

standard deviations.
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Table 2: Average Smoke Days by Climate Region

(1) (2) (3)
Smoke Days Medium Smoke Days Thick Smoke Days

Climate Regions

Northeast 18.787 3.226 0.812

(1.506) (0.567) (0.295)

Northern Rockies/Plains 49.289 11.094 4.999

( 7.605) (1.917) (1.680)

Northwest 30.459 7.774 5.144

(8.990) (2.558) (2.479)

Ohio Valley 33.222 5.280 1.762

(9.481) (2.135) (0.771)

Southeast 18.075 1.713 0.340

(6.052) (0.803) (0.310)

South 34.063 4.645 1.012

(9.110) (1.823) (0.753)

Southwest 20.157 4.365 2.132

(7.108) (1.841) (1.254)

Upper Midwest 43.555 8.731 3.312

(8.374) (2.577) (0.811)

West 22.130 4.237 3.426

(8.559) (2.550) (2.421)

Notes: Averages are calculated by taking the mean of the smoke variables for all census tracts within each region throughout

all years between 2006-2020. Smoke Days represents overall smoke exposure, while Medium and Thick Smoke Days represent

intense exposure. The values in parentheses are the between-census-tract standard deviations.
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Table 3: Wildfire Smoke and PM2.5 (Satellite Data Only)

Annual Average PM2.5

(1) (2) (3) (4)

Smoke Days 0.0166∗∗∗

(0.00554)

Thin Smoke Days 0.00579∗∗∗

(0.00172)

Medium Smoke Days 0.0196∗∗∗

(0.00584)

Thick Smoke Days 0.0410∗∗∗

(0.00759)

Smoke Hours 0.00262∗∗

(0.000992)

Thin Smoke Hours 0.000543
(0.000412)

Medium Smoke Hours 0.00436∗

(0.00258)

Thick Smoke Hours 0.00533∗∗∗

(0.00198)

Census Tract Fixed Effects Yes Yes Yes Yes

State-Year Fixed Effects Yes Yes Yes Yes

Outcome Mean 9.228 8.773 9.228 8.773

Observations 710908 517024 710908 517024

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Values in parentheses are standard errors, clustered at the state

level. Each column represents a separate regression. Density-specific models have less observations since plume density is not reported

in the raw data until 2007 and not at all in 2009.
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Table 4: Smoke Days and Annual Average PM2.5 (Satellite vs. Monitor)

(1) (2) (3) (4)
Satellite Ground Monitor Satellite Ground Monitor

Smoke Days 0.0134∗∗∗ 0.0181∗∗∗

(0.00325) (0.00450)

Thin Smoke Days -0.000646 0.0000879
(0.00404) (0.00576)

Medium Smoke Days 0.0187∗∗∗ 0.0286∗∗

(0.00537) (0.0106)

Thick Smoke Days 0.0674∗∗∗ 0.0768∗∗∗

(0.0202) (0.0206)

Census Tract Fixed Effects Yes Yes Yes Yes

State-Year Fixed Effects Yes Yes Yes Yes

Outcome Mean 9.746 9.939 9.235 9.372

Observations 3322 3322 2416 2416

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level. Each column

represents a separate regression. For each estimation, I restrict the satellite data to include only the observations that match with

the ground monitor data.
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Figures

Figure 1: Average Annual Smoke Days throughout the U.S. (2006-2020)

Notes: Smoke days are averaged in each census tract across all years 2006-2020.
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Figure 2: National Trends in Wildfire Smoke Exposure

(a) Smoke Days

(b) Percent Thick Smoke Days

Notes: Smoke days are averaged across all census tracts in each year. The “Percent Thick Smoke Days” figure represents the
percent of all smoke days with thick smoke.
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Figure 3: Smoke Exposure and Demographics

(a) Overall Smoke Exposure

(b) Percent Change in Smoke Exposure

Notes: Coefficient plots display the results of bivariate regressions. The dependent variable of panel (a) is mean smoke days in
each census tract between 2006 and 2020. Panel (b) looks at the percent change in smoke days for each census tract between
2006 and 2020.
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Appendix

Table S1: Smoke Hours and Annual Average PM2.5 (Satellite vs. Monitor)

(1) (2) (3) (4)
Satellite Ground Monitor Satellite Ground Monitor

Smoke Hours 0.00302∗∗∗ 0.00367∗∗

(0.00104) (0.00144)

Thin Smoke Hours 0.000839 0.00159∗∗

(0.000682) (0.000756)

Medium Smoke Hours 0.00348 0.00559
(0.00261) (0.00421)

Thick Smoke Hours 0.0182∗∗∗ 0.0152∗∗∗

(0.00334) (0.00430)

Census Tract Fixed Effects Yes Yes Yes Yes

State-Year Fixed Effects Yes Yes Yes Yes

Outcome Mean 9.746 9.939 9.235 9.372

Observations 3322 3322 2416 2416

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clustered at the state level. Each column

represents a separate regression.
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Table S2: Smoke Exposure and Demographics

(1) (2) (3) (4)
Smoke Days log ∆ Smoke Days N (Census Tracts) Outcome Means

Log Population -1.533∗∗ 0.0487∗ 64735, 64701 27.044, 1.256
(0.619) (0.0247) (11.693), (0.487)

Under 18 share 16.39∗∗∗ 0.566∗ 64735, 64701 27.044, 1.256
(5.531) (0.307) (11.693), (0.487)

Over 60 share 2.220 -0.513∗ 64735, 64701 27.044, 1.256
(6.701) (0.268) (11.693), (0.487)

White Share 8.295∗∗∗ -0.479∗∗∗ 64735, 64701 27.044, 1.256
(2.422) (0.111) (11.693), (0.487)

Black Share -4.530∗∗ -0.0785 64735, 64701 27.044, 1.256
(2.172) (0.121) (11.693), (0.487)

Hispanic Share -10.37∗∗ 0.975∗∗∗ 64735, 64701 27.044, 1.256
(3.874) (0.131) (11.693), (0.487)

Log Income Per Capita -1.646∗∗ -0.0342 64682, 64648 27.047, 1.256
(0.656) (0.0426) (11.694), (0.487)

Poverty Share -0.156 0.299∗∗ 64703, 64669 27.046, 1.256
(2.707) (0.138) (11.694), (0.487)

Urban -9.508∗∗∗ 0.270∗∗∗ 48151, 48122 26.527, 1.277
(1.833) (0.0742) (11.705), (0.492)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Each row indicates separate bivariate regressions. The dependent variables are

the smoke variables, averaged across each census tract between 2006 and 2020. Smoke Days are the total number of smoke exposure days. Log

∆ Smoke Days represents the percent change in smoke days between 2006 and 2020. The independent variables are demographics from the 2010

census. Values in parentheses associated with each regression coefficient are standard errors, clustered at the state level. Outcome means are for

the two respective smoke variables, and values in parentheses beneath are standard deviations.
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Figure S2: Intense Smoke Exposure Days throughout the U.S. (2006-2020)

(a) Average Annual Thick Smoke Days

(b) Average Annual Medium Smoke Days

Notes: Maps display average annual Thick and Medium smoke days according to the HMS definition of Thick and Medium
smoke. Averages are for each census tract between 2006 and 2020.
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Figure S3: Average Annual Smoke Days by Region

(a) Northeast (b) Northern Rockies/Plains (c) Northwest

(d) Ohio Valley (e) Southeast (f) South

(g) Southwest (h) Upper Midwest (i) West

Notes: Annual smoke days are averaged across all census tracts within the same region. For more information on the choice of
climate regions, see https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php.
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