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Abstract When participating in an auction is costly, a potential bidder has to decide
whether to enter the auction or not. The extent to which the potential bidders know their
private cost before making their entry decisions determines how selective the entry process
is. Endogenous selective entry is common in many auctions and it has important implica-
tions for designing auctions, in particular, choosing the bid discount policy that is frequently
used in public procurements to achieve distributional goals of the government. Prior
empirical studies of the bid preferences were based on frameworks that either did not
explicitly model endogenous participation or assumed endogenous, but non-selective par-
ticipation. This study empirically investigated whether the entry process is selective in the
highway procurement auctions run by the California Department of Transportation. To this
end, the asymmetric affiliated-signal model was adapted to permit endogenous selective
entry. Model parameters, including entry costs and distributions of construction costs for
regular and fringe companies, were estimated nonparametrically. The results show evidence
favoring selective entry of the fringe firms and imply that the level of bid discount required
to achieve the procurement buyer’s policy objective may be lower than what is previously
found in the literature under the assumption of non-selective entry.

Keywords Procurement auctions . Endogenous entry . Selection . Bid discount policy

JEL D44 . H57 . L74

Introduction

In public procurement, bid discount is a policy commonly used by government
agencies to promote domestic, local or small firms and companies located in
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economically disadvantaged areas, or owned by minority groups. The bid discount
policy awards a contract to the favored firm when its bid is within a certain percentage
of the lowest bid among the unfavored firms. This rule does not change the price of the
contract, which is the winner’s bid.

When bidder participation is endogenous and possibly selective, whether there is
selection and how selective the entry process is have potentially strong effects on the
optimal level of bid discount. For example, Sweeting and Bhattacharya (2015) showed
that a seller’s revenue-maximizing bid discount level can vary from 2.5 to 12.5%
depending on the degree of selection. A weaker player’s probability of winning
increases with the degree of selection.

In the existing literature, bid-preference programs have been studied under either
exogenous entry (Marion 2007) or endogenous but non-selective entry
(Krasnokutskaya and Seim 2011) models. Incorrectly assuming non-selection may lead
to incorrect estimates of model primitives (Roberts and Sweeting 2010) which in turn
bias the policy recommendation, in this case evaluations of bid-preference programs.
This study empirically investigated whether the non-selective entry assumption holds in
California’s highway procurement auction data. Model primitives were estimated using
the affiliated-signal (AS) model (Gentry and Li 2014). The AS model is a flexible entry
model. It nests a wide range of entry processes depending on the information firms
have prior to making their entry decisions. While a non-selective entry model assumes
that potential bidders do not have any private information of their costs of project
completion before deciding whether to participate in the auction, the AS model allows
firms to each receive a private information signal of its project cost prior to the entry
decision. A perfectly informative signal implies full selection and a perfectly uninfor-
mative signal implies non-selection.

The California Department of Transportation (Caltrans) awards highway construction
and repair contracts through first-price sealed-bid auctions. Caltrans aims to promote
disadvantaged bidders in their procurement auctions and implements a 5% bid discount
for small businesses (SB) in state-funded contracts.1 California’s Small Business Partic-
ipation Program sets the allocative goal to award 25% of all state-funded contract dollars
to SB. The auctions in this sample were not subject to any preference program. Firmswere
categorized into two types, fringe and non-fringe (Bajari et al. 2014), to account for
differences in size and experience. Firms’ participation and bidding decisions were
modelled as a two-stage game. The equilibrium described by Gentry and Li (2014) was
adapted to the setting of low-bid auctions with asymmetric bidders.

If firms have private information about their project costs prior to making the entry
decision (i.e. the signal is not perfectly uninformative), only self-selected firms that are
more cost-efficient will participate in the auction. Otherwise, the entrants are a random
sample of the potential bidders. Thus, selective entry implies that the project cost
distribution of the entrants is a truncated distribution of the project cost distribution
of all firms, whereas non-selective entry implies that the former is the untruncated
distribution. This study investigated whether entry is selective by comparing the two
distributions. To recover these distributions, the nonparametric identification strategy of
Guerre et al. (2000) was used. The result favors selective entry for fringe firms, which

1 Firms promoted by Caltrans include SB, disadvantaged business enterprises, and disabled veteran business
enterprises. Information can be found on Caltrans website (Caltrans 2020a).
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implies that the level of bid discount required for Caltrans to achieve its policy
objective may be lower than what is previously found in the literature under the non-
selective entry assumption.

This paper relates to the literature of empirical analysis of auctions in three ways.
First, the evidence of selection found in the California highway procurement market
contributes to the growing literature on empirical testing of different entry models (Li
and Zheng 2009, 2012). Second, this study ties the theoretical literature on selective
entry and auction design (Sweeting and Bhattacharya 2015) to the empirical literature
evaluating bid preference programs (Marion 2007; Krasnokutskaya and Seim 2011).
Third, the nonparametric estimation method in Gentry and Li (2014) was appllied to the
Caltrans empirical setting, which contributes to the literature on empirical auction
studies, where models with partially selective entry are estimated (Roberts and
Sweeting 2013, 2016; Bhattacharya et al. 2014). While all three prior studies used
fully parametric estimation approaches, assuming no unobserved heterogeneity across
auctions permits this study to take a nonparametric approach. Although the conditional
distribution of project costs on signals cannot be fully estimated using this approach,
important model primitives can still be recovered. This attempt to empirically estimate
auction models with endogenous, potentially selective entry nonparametrically is the
first in the English language literature to my knowledge.

Data

This study analyzed data from Caltrans on road paving contracts from 1999 to 2005.2

This is the same sample used by Bajari et al. (2014). The data consist of 819 contracts
in 12 districts in California, adding up to a total of $2.21 billion contract value (as
measured by the winning bids). 348 unique contractors participated in the auctions and
submitted a total of 3666 bids.

The contracts vary in size, and the type of work ranges from small-scale highway
resurfacing to four-lane freeway construction. A project includes a number of work
items to be completed according to specifications provided by Caltrans. For each work
item, engineers at Caltrans provide an estimated quantity needed and an estimated unit
price. The engineer’s estimate of project cost is thus the sum of unit price times item
quantity across all work items. This measure is given to the contractors and is intended
to represent the fair and reasonable price the government expects to pay. When
deciding how much to bid on a contract, a firm bases the decision on its cost of
completing the specified project, which this study refers to as project cost. Project cost
depends on factors such as prior experiences in similar projects and a firm’s current
workload relative to its production capacity. Therefore, the project cost is private
information to each firm.

To bid on a contract, interested contractors must submit completed bid documents,
which require the contractor to provide the unit price for each item, the list of
subcontractors and the work item(s) subcontracted to each subcontractor. Bid prepara-
tion takes time and effort and typically involves negotiating with subcontractors.

2 Excluded were contracts from 2001 and the first half of 2003 whose details are no longer available from
Caltrans (Caltrans 2020b).
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Therefore, bidding is costly and a contractor may not know the exact project cost before
negotiations. In the model below, such bid preparation costs are treated as entry costs.
The AS model was used to model the firms’ imperfect knowledge about the project cost
prior to entry and bidding.

Asymmetry among bidders is a salient feature of the Caltrans procurement market. In
this sample, the top 20 firms (as ranked by market share) captured 73.4% of the market
share (i.e. share of total contract dollars awarded), whereas the remaining 328 firms each
had less than 1%market share. Following Bajari et al. (2014), this study refers to the top
20 firms as non-fringe (or regular) bidders and the remaining firms as fringe bidders to
account for asymmetry in size and experience. Of the 819 contracts, 47.4% were
awarded to the fringe firms, although half of the fringe firms won only one contract in
the sample. These fringe firms likely operate as subcontractors most of the time.

Since the firms’ entry behavior plays a central role, it is important to correctly
identify potential bidders for each auction in the sample.3 Taking an approach similar to
the one used by Roberts and Sweeting (2013), an auction’s potential bidders were
defined as the bidders plus the firms satisfying the following conditions: 1) in the prior
90 days, submitted bids on contracts of similar size in the same district, and 2) whose
distance to the project site in the contract mentioned in 1) was within 110 miles.4

Summary statistics are shown in Table 1. The median number of potential bidders was
nine, with three non-fringe potential bidders and six fringe potential bidders, and the
median number of fringe and non-fringe bidders were both two. Among potential bidders,
on average 45% of fringe firms and 64% non-fringe firms entered (calculated using
number of bidders/number of potential bidders for each type of firms). Although fringe
firms and non-fringe firms had similar normalized bids (bid/engineer’s estimate and
winning bid/engineer’s estimate), the projects won by fringe firms tended to have smaller
sizes (as measured by the engineer’s estimate) than those won by non-fringe firms.

Evidence of Selection

This section presents evidence favoring selective entry in the sample. The method used
here is that of Roberts and Sweeting (2011).

First, Athey et al. (2011) showed that under non-selective entry, in a type-symmetric
entry equilibrium, that the weak type enters with positive probability implies that the
strong type enters with probability one. That the strong type enters with probability less
than one implies the weak type enters with probability zero. Thus, if the entry process is
non-selective, whenever some fringe firms enter, all non-fringe potential bidders should
enter. However, for the 728 auctions that some fringe firms entered, in only 34.3% did
all non-fringe potential bidders entered. Similarly, in the 520 auctions where not all
non-fringe potential bidders enter, only 8.41% had zero fringe potential bidders enter.

3 Prior studies of Caltrans auctions typically used the number of project plan holders as a proxy for the number
of potential bidders, but this measure is not available in the data used for this study.
4 The third quartile of the same measure among all observed bids in the sample is 110. Eighty-two contracts in
the sample did not have any same-district contracts in the past 90 days, in which case, the four most recent of
such contracts were used, where four is the median number of the same measure in the sample excluding those
82 contracts.
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Second, non-selective entry implies that the entrants are a random sample of the
potential bidders. This can be tested by estimating a Heckman selection model
(Heckman 1976). The regression equation regresses observed bids on project charac-
teristics. The selection equation involves the number of potential bidders. The exclu-
sion restriction is that the number of potential bidders affects entry behavior (since a
larger number of potential bidders means more competition for the firms) without
affecting bids directly. If the entry process is selective, a higher probability of entry will
correspond to a lower project cost and thus a lower bid, implying a negative correlation
between the error terms of the two equations. Table 2 compares the ordinary least
squares (OLS) results to the Heckman results. Although the estimated inverse Mills
ratio λ appeared to be negative (consistent with the negative correlation hypothesis), it
was not statistically significant. However, the coefficient for the fringe indicator was
much higher in the estimated Heckman model, suggesting that the OLS model not
accounting for selection might have underestimated the difference in bids between
fringe and non-fringe firms. Note that in both columns of Table 2, the coefficient for the
log of the engineer’s estimate was significant and close to 1, implying that the bids
submitted were centered around the engineer’s estimate of a project. This provides
some support for using the engineer’s estimate to control for project heterogeneity and
assuming no unobserved heterogeneity in the estimation approach herein.

These two findings indicated that the entry process is likely to be selective in the
sample. To further investigate, a structural model allowing selection was developed and
estimated.

Table 1 Summary statistics of project characteristics and bids

Variable Mean SD Median Min. Max. Observ.

Across contracts in the sample

Engineer’s estimate ($million) 2.89 7.26 0.95 0.09 105.61 819

when fringe wins 1.64 2.35 0.71 0.09 19.96 388

when non-fringe wins 4.01 9.62 1.33 0.09 105.61 431

Winning bid/engineer’s estimate 0.95 0.20 0.93 0.38 2.19 819

Fringe 0.95 0.22 0.92 0.38 2.19 388

Non-fringe 0.94 0.17 0.94 0.83 1.82 431

Number of items 32.78 30.98 21 4 326 819

Number of bidders 4.48 2.16 4 2 19 819

Fringe 2.77 2.20 2 0 17 819

Non-fringe 1.70 1.02 2 0 5 819

Number of potential bidders 9.94 5.50 9 2 34 819

Fringe 7.15 5.23 6 0 29 819

Non-fringe 2.79 1.30 3 0 7 819

Across bids in the sample

Bid/engineer’s estimate 1.05 0.26 1.02 0.38 7.86 3666

Fringe 1.06 0.28 1.03 0.38 7.86 2272

Non-fringe 1.03 0.22 1.00 0.49 2.73 1393

Source: Own calculations using 1999–2005 data from Bajari et al. (2014)
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Model

Consider a standard first-price sealed-bid auction (with no reserve price or bid subsidy)
held by a procurement buyer to allocate a project among N potential suppliers of two
types, fringe firms and non-fringe firms (type τ ∈ {f, n}). Nf, Nn are common knowl-
edge. Following Krasnokutskaya and Seim (2011), this study assumed the project costs
of the firms are independent private values (IPV) drawn from type-specific distributions
Ff, Fn. Although the project costs of each firm are private information, the two
distributions are common knowledge. An interested contractor must pay an entry cost
Kτ (e.g., opportunity cost and bid preparation cost) before participating in the auction.
This entry cost was modelled as an auction-specific cost dependent on the firm’s type,
similar to the one in Roberts and Sweeting (2013).

The presence of entry cost divides the auction game into two stages: first entry, then
bidding. In Stage 1, each potential bidder, i, observes a private signal, si, of its (not yet
known) project cost, ci, and all potential bidders choose whether to enter the auction
simultaneously. In Stage 2, the n entrants from Stage 1 learn their exact project costs
and submit bids. The lowest bidder is awarded the contract at the price of its bid.
Following Krasnokutskaya and Seim (2011), this study assumed the bidders observe
the number of entrants nf, nn when they entered Stage 2.

Table 2 Regression results with and without accounting for selection

OLS Heckman

Constant 0.733*** 0.728***

(0.119) (0.118)

Fringe 0.038*** 0.045***

(0.006) (0.010)

ln (engineer’s estimate) 0.947*** 0.948***

(0.008) (0.008)

Working days 0.0001** 0.0001**

(0.00006) (0.00006)

Number of fringe bidders −0.016*** −0.015***
(0.003) (0.003)

Number of non-fringe bidders −0.014* −0.012
(0.008) (0.008)

Number of items 0.001*** 0.0009***

(0.0003) (0.0003)

λ −0.024
(0.028)

a Standard errors adjusted for clustering provided in parentheses. Dependent variables of the two columns are
both log of bids. Heckman model results were estimated with the full maximum likelihood method. The
selection equation included variables from the regression equation plus the number of potential bidders of each
type, which were incorporated as a flexible polynomial (up to degree four). Both columns included controls
for year, month, and district. λ is the estimated inverse Mills ratio. The R2 for OLS is 0.972. Statistical
significance: 1% (***), 5% (**), 10% (*). Source: Own calculations using 1999–2005 data from Bajari et al.
(2014)
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Fτ(c, s) denotes the type-specific joint cumulative distribution function of Ci and Si.
Let the support of Cτ be cτl ; c

τ
u

� �
. The AS model only assumes that a higher signal

implies a potentially higher cost: for each firm i, s′ ≥ s implies Fτ(c| s
′) ≤ Fτ(c| s).

Following Gentry and Li (2014), the signals of both types were normalized to have a
uniform marginal distribution such that Si~U[0, 1]. This normalization was used
because the distributions of the signals are not of direct interest and cannot be inferred
from the observed entry decisions and bids. Since Fτ(c| s) is type-dependent and Fτ(c,
s) = Fτ(c| s)F(s), the variable of interest Fτ(c, s) is still type-dependent. Because the
observed variation in Fτ(c, s) in the data is fully captured by Fτ(c| s), this normalization
can be done without loss of generality.

In the model, the equilibrium strategy consists of an entry strategy used by firms to
decide whether to enter in Stage 1 and a bidding strategy used to decide how much to
bid in Stage 2. This study focuses on the following type-symmetric monotone pure
strategy Bayesian Nash equilibrium.

Stage 1 Equilibrium Entry Strategy

The entry strategy in Stage 1 was characterized by a type-specific entry threshold
sτ∈ 0; 1½ �: potential bidder i of type τ chooses to enter if and only if si≤sτ . The
(selected) distribution of project costs among entrants at threshold sτ is the following
truncated distribution:

F*
τ c; sτ
� �

≡F
Cτ ;Sτ

cjs≤sτ
� �

¼
Pr Cτ ≤c; S≤sτ
� �
Pr S≤sτ
� � ¼ 1

sτ
∫sτ0 Fτ cjtð Þdt ð1Þ

where the last equality follows from Si~U[0, 1].
Suppose bidder i, if entering, has Stage 2 expected profitΠII

τ ci; nf ; nn
� �

(elaborated in

the next subsection). In Stage 1, let πI
τ be the expectation of ΠII

τ over all possible (nf, nn)
(since i gets zero profit if it does not enter, only the cases where i enters are considered):

πI
τ ci; s f ; sn;N f ;Nn

� �
¼ ∑

1≤nτ ≤N τ ;
0≤n−τ ≤N−τ

ΠII
τ ci; nf ; nn
� � � Pr nτ ; n−τ jsτ ; s−τ ;N τ ;N−τ ; i enters

� �
; ð2Þ

where −τ refers to the type of firm other than bidder i’s type. Since nτ∼Binomial N τ ; sτð Þ,
Pr nτ ; n−τ jsτ ; s−τ ;N τ ;N−τ ; i entersð Þ in the last equation can be rewritten as

Pr nτ ; n−τ j�ð Þ ¼ N τ−1
nτ−1

� 	
sτnτ−1 1−sτ

� �N τ−nτ N−τ
n−τ

� 	
sn−τ−τ 1−s−τ
� �N−τ−n−τ

: ð3Þ

Now, consider a type-τ bidder i’s entry decision in Stage 1. Given its signal si, i’s
expected profit from entry is

ΠI
τ si; s f ; sn;N f ;Nn

� �
≡ECτ πI

τ ci; s f ; sn;N f ;Nn

� �
jsi

h i
¼ ∫c

τ
u
cτl
πI
τ ci; s f ; sn;N f ;Nn

� �
f τ cijsið Þdci: ð4Þ
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Bidder i enters the auction if and only if its expected profit is no smaller than the entry
cost Kτ. The entry threshold is thus determined by the condition of zero net profit of
entry. The equilibrium entry threshold s*f ; s

*
n are uniquely characterized by the system

of equations

ΠI
f s*f ; s

*
f ; s

*
n;N f ;Nn

� �
¼ K f ; ð5Þ

and

ΠI
n s*n; s

*
f ; s

*
n;N f ;Nn

� �
¼ Kn: ð6Þ

Note that if ΠI
τ 1; 1; s*−τ ;N f ;Nn
� �

> Kτ , then s*τ ¼ 1. If ΠI
τ 0; 0; s*−τ ;N f ;Nn
� �

< Kτ ,

then s*τ ¼ 0.

Stage 2 Equilibrium Bidding Strategy

In Stage 2, given ci, nf, nn, type-τ entrant i submits bid bi to maximize expected profit.
The type-symmetric equilibrium strategies for first-price low-bid auctions below are
well known in the literature, but under the AS model, the distribution of project costs
among entrants is now the truncated distribution in Eq. 1.

Letting yτ(b) be the inverse bid function, under the IPV assumption, i’s expected
profit is

ΠII
τ ci; nf ; nn
� � ¼ bi−cið Þ 1−F*

τ yτ bið Þ; sτ
� �� �nτ−1

1−F*
−τ y−τ bið Þ; s−τ
� �� �n−τ

: ð7Þ

The first-order condition (FOC) with respect to the bid is thus

b ¼ cþ nτ−1ð Þ
f *τ yτ bð Þ; sτ
� �

y
0
τ bð Þ

1−F*
τ yτ bð Þ; sτ
� � þ n−τ

f *−τ y−τ bð Þ; s−τ
� �

y
0
−τ bð Þ

1−F*
−τ y−τ bð Þ; s−τ
� �

0@ 1A−1

: ð8Þ

Intuitively, a firm’s bid is equal to its project cost plus some markup. The boundary
conditions of these two differential equations (since τ ∈ {f, n}) can be shown as follows.
Let Bτ(c) be the bid function. If Bf c fl

� �
≠Bn cnl
� �

i.e. Bτ cτl
� �

< B−τ c−τl
� �

, then a type τ

bidder drawing project cost cτl and competing with only type −τ firms can still win by
bidding slightly higher than Bτ cτl

� �
and thus earn a slightly higher profit. Similarly, if

Bτ cτu
� �

< B−τ c−τu
� �

, then a type τ bidder with cτu and facing only one type −τ bidder
with c−τu can bid slightly higher than Bτ cτu

� �
to still win the auction and earn a higher

profit. Therefore, the FOC uniquely characterizes the equilibrium bidding strategies
Bτ(c) with the following boundary conditions:

Bf c fl
� �

¼ Bn cnl
� � ¼ b> max c fl ; c

n
l

n o
; ð9Þ

Peng S.



and

Bf c fu
� � ¼ Bn cnu

� � ¼ �b > max c fu ; c
n
u


 �
; ð10Þ

where b; �b are the minimal and maximal submitted bid, respectively.
In the empirical analysis, this study assumed that the firms play the equilibrium entry

and bidding strategies described in this section. A potential bidder enters if and only if
its signal is lower than the entry threshold. An intuitive interpretation is that a potential
bidder chooses to participate in the auction if according to a vague idea of project cost,
its cost-efficient level reaches some threshold so that the firm expects to earn a net
profit from entry. Entrants then bid according to the same type-symmetric monotone
bid functions to maximize profits.

Note that the type-symmetric entry equilibrium described in this section exists but is
not necessarily unique (Athey et al. 2011). That is, there exists s f ; sn

� �
that character-

izes the equilibrium entry behavior, but there may be multiple qualifying s f ; sn
� �

. This

study assumed all firms enter according to the same s f ; sn
� �

, which were recovered
from the data.

Estimation

This section shows how the project cost, entry threshold and entry cost were recovered
from the data. Instead of imposing any assumption on the specific distribution of the
project cost, this study combined the nonparametric methods in Guerre et al. (2000) and
Gentry and Li (2014) to estimate the marginal distributions of the project costs. The
nonparametric approach taken here is the main difference between the empirical
analysis in this study and those in the existing literature of endogenous and
(possibly) selective entry models.

There are two reasons why this study was able to explore this nonparametric method
whereas prior literature did not. First, no unobserved heterogeneity across auctions was
assumed in the sample. When there is unobserved heterogeneity, identification be-
comes difficult and a nonparametric method cannot be used (Roberts and Sweeting
2013). Second, Gentry and Li (2014) showed that in order to identify F(c| s) at every s,
the econometrician ideally should observe a continuous auction-level instrument which
shifts entry behavior without affecting the underlying distributions. Such continuous
entry behavior shifters are limited in practice. The auction-level instrument in the data
used in this study was the number of potential bidders of each type, which is a discrete
variable. Therefore, F(c| s) cannot be fully identified at every s. However, the marginal
distribution FC(c) can be recovered by combining observations from various levels of s
if there is complete variation of s in the data, which was the case for this sample.

Identification of F*
τ c; sτð Þ

Assuming all firms bid according to the equilibrium bidding strategy given in the model
section, a firm’s project cost satisfies Eq. (8). The number of bidders of each type are
known and bids are observed. Since the firms’ project cost distribution depends on the
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characteristics of the project and varies by auction, F*
τ c; sτð Þ is auction-specific. Given

an auction k, letGτ, k(b) be the (cumulative) probability distribution of bids among type τ
bidders and let gτ, k(b) be the corresponding probability density function. It is well
known in the literature that a bidder’s project cost can be estimated using

b ¼ cþ nτ−1ð Þ gτ ;k bð Þ
1−Gτ ;k bð Þ þ n−τ

g−τ ;k bð Þ
1−G−τ ;k bð Þ

� 	−1

; ð11Þ

where Gτ, k(b) and gτ, k(b) can be estimated from the bids data. The distribution of the
recovered c is the truncated distribution F*

τ ;k c; sτð Þ. Thus, F*
τ ;k c; sτð Þ is uniquely

identifiable for an auction. However, the sample size of the bids data from a single
auction is too small to generate a reasonable estimate, which leads to the next subsection.

Project Heterogeneity

So far,Gτ, k(b) and gτ, k(b) are auction-specific, but to obtain a large enough sample size
for the estimation of the bids distribution, bids data from different auctions need to be
pooled together. Following Marion (2007), this study allowed the distribution F*

τ ;k

c; sτð Þ to be dependent on project characteristics zk such that F*
τ ;k c; sτð Þ ¼ F*

τ c; sτ jzkð Þ.
Specifically, the engineer’s estimate was the zk used to control for project heterogeneity.
Since this study assumed that there is no unobserved heterogeneity, the engineer’s
estimate fully captures the heterogeneity across contracts, and the firms draw project
costs from the same distribution F*

τ c; sτ jzkð Þ for each auction. Note that sτ is exoge-
nous because it depends only on the number of potential bidders and the entry cost,
both of which are exogenous. The variation of sτ in the data results in different
truncation levels in F*

τ c; sτ jzkð Þ. Using the formula of conditional probability, this
study first estimated the joint distributions and densities of the bid and engineer’s

estimate and then estimated Gτ bjzð Þ ¼ Gτ b;zð Þ
FZ zð Þ and gτ bjzð Þ ¼ gτ b;zð Þ

FZ zð Þ . Project costs were
then recovered by pooling bids data together:

b ¼ cþ nτ−1ð Þ gτ bjzð Þ
1−Gτ bjzð Þ þ n−τ

g−τ bjzð Þ
1−G−τ bjzð Þ

� 	−1

: ð12Þ

Estimation Method

Because an entrant’s bid depends on the number of bidders of each type, bids data from
auctions of different (nf, nn) come from different bid functions and Gτ(b| z), gτ(b| z) need
to be estimated separately for each (nf, nn) group of contracts. In the estimation, this
study used auctions with nf between one and four and nn between one and three, which
tend to have the largest sample sizes for bids. There were 496 such contracts in total.

Using the nonparametric method in Guerre et al. (2000) and following Marion (2007),
this study estimated the distributions of bids and project costs using the standard kernel
estimators. The results of this estimation method can be sensitive to the choice of
bandwidth (Marion 2007). Following Marion (2007), to estimate the distributions of the
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recovered project costs, a log transformation was applied to mitigate the effects of
skewness due to a few very high bids in the data. Rule of thumb was then used to select
bandwidth. When estimating the conditional distributions and densities Gτ(b| z), gτ(b| z),
the cross validation maximum likelihood method was used to select bandwidth.

The entry threshold was estimated using the probability of entry among potential bidders
of each type, which, in the data, is the proportion of potential bidders who entered the
auction. Since the private signal was assumed to be uniformly and independently distributed,
the probability a firm enters is equal to the entry threshold. Among the 496 contracts
analyzed, in 194 contracts all the non-fringe potential bidders entered, and in 79 contracts,
all the fringe potential bidders entered. In other words, the estimated entry threshold in these
auctions is one. This means that the truncated distribution in Eq. 1 collapses to the full
marginal distribution of project costs, since all potential bidders entered. This study exploited
this feature of the sample and used these subsets of the sample to estimate the marginal
distribution FCτ cð Þ, an important model primitive of interest.

The selected distributions were then estimated using data from auctions with entry
thresholds less than one. If the entry process was selective, the selected distribution was
a truncated distribution of FCτ cð Þ. Otherwise, a non-selective entry process implies that
no matter what the entry threshold is, the distribution of the project costs among the
entrants is the same as FCτ cð Þ. Further, since a lower entry threshold results from lower
expected profit and more competition, if the entry process is selective, the truncated
distribution would be more skewed to the lower-cost end.

Entry Cost

The entry cost, Kτ, was estimated as a percentage of the engineer’s estimate by
extending the entry cost estimation approach in Athey et al. (2011). The estimation
of entry cost is essential for counterfactual analysis. Given the exogenous variables (Nf,
Nn) and the engineer’s estimate (which reflects project characteristics of the contract),
Kτ can be estimated using Eqs. 5 and 6.

Following Athey et al. (2011), a parametric model was specified for the entry
threshold:

sτ X ;Nð Þ ¼ exp αX þ βNð Þ
1þ exp αX þ βNð Þ ; ð13Þ

where X is engineer’s estimate, and N refers to (Nf,Nn). Equation 13 can be rewritten as

ln
sτ

1−sτ

 !
¼ αX þ β1Nn þ β2N f : ð14Þ

Parameters in Eq. 14 were estimated from the data. The entry threshold was then
determined using Eq. 13 given the exogenous variables.

Kτ is essentially the expected profit of a potential bidder whose signal is equal to the
entry threshold sτ . Using Eq. 4, this expected profit was estimated through simulations.
For each simulation, first, ci was randomly drawn from the distribution f τ cjsτð Þ. Given
each (nf, nn), ci was then mapped to the respective ΠII

τ ci; nf ; nn
� �

. Finally, given (Nf,
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Nn), the expected profit of a potential bidder with project cost ci was calculated by
taking the expectation of ΠII

τ ci; nf ; nn
� �

across (nf, nn) using Eqs. 2 and 3. This
simulation was repeated 5000 times. The average of the 5000 simulation results was
taken, which should yield a consistent estimator of Kτ.

Since f τ cjsτð Þ cannot be identified nonparametrically, the approximation belowwas used:

bf τ cjsτ
� �

¼ ∫susl f τ cjsð Þds; ð15Þ

where sl and su are some lower and upper bound for sτ . When sl and su get arbitrarily close to
each other, Eq. 15 collapses to the true distribution. In practice, sl, suwere chosen to be as close
to sτ as the data allows to ensure a large enough sample size. Equation 15 was estimated by
pooling recovered project costs from auctions whose entry thresholds are between sl and su.
The appropriateness of this approach depends on howmuch fτ(c| s) for different s differs from
one another.

To map ci to ΠII
τ ci; nf ; nn
� �

given each (nf, nn), Eq. 7 was rewritten:

ΠII
τ ci; nf ; nn
� � ¼ bi−cið Þ � 1−Gτ bið Þð Þnτ−1 � 1−G−τ bið Þð Þn−τ : ð16Þ

In other words, a type-τ bidder’s Stage 2 expected profit is its markup times its
probability of winning, which is the probability that all its rivals bid higher than its
bid. Gτ(b), G−τ(b) were estimated from the bids data, and bi was inferred in the
following way. Within the range of commonly observed bids (0.2 to 3 times the
engineer’s estimate), 50,000 “hypothetical bids” were uniformly allocated. Following
the method in Athey et al. (2011), Eq. 12 was used to infer the project cost corre-
sponding to each hypothetical bid. This approach created a table mapping bids to
project costs. Any given ci could then be mapped back to bi by using the closest project
cost (and the corresponding bid) in this table as a proxy. Since the 50,000 hypothetical
bids were densely allocated, this approach should yield a very close approximation.

A limitation of this entry cost estimation is that Kf, Kn were estimated using separate
zero profit conditions as opposed to enforcing the other type’s entry threshold K−τ in
the estimation of Kτ, as Eqs. 5 and 6 require. Separate zero profit conditions were used
because data that satisfied both s f and sn was too thin. The same approach can be
applied if there is a large enough sample that satisfies both s f ; sn. For this reason, the
estimated Kτ should be interpreted as the expected profit of a type-τ threshold firm
competing in an average environment as opposed to an environment where firms of the
other type enter according to s−τ . How different these two are, again, depends on how
different the distribution F−τ cjs−τð Þ is from FC−τ cð Þ.

Results

Comparing Density Estimates of the Full and Selected Distributions

Figures 1 and 2 compare the full marginal distribution of project costs (of all firms)
with the selected distribution (of the entrants) for each type of firms. The results shown
were estimated conditional on the median engineer’s estimate. The selected distribution
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was estimated from auctions with s f from 0.2 to 0.5 for fringe firms and sn less than 0.4
for non-fringe firms. Since auctions of different entry thresholds were combined in the
estimation, the result should be interpreted not as one F*

τ c; sτð Þ but as various truncated
distributions pooled together. In Fig. 1, compared to the full distribution, the selected
distribution resembles a truncated distribution skewed to the left, which is consistent
with the theoretical predication of selective entry. While Fig. 1 shows evidence
favoring selective entry among the fringe firms, such evidence was not found for the
non-fringe firms (Fig. 2).

Entry Cost

Kτ was estimated for a representative auction with engineer’s estimate $952,000 (the
median in the sample), two non-fringe and four fringe potential bidders (the most

Fig. 1 Fringe Firms’ Project Cost Density Comparison. Source: Own calculations using 1999–2005 data
from Bajari et al. (2014)

Fig. 2 Non-fringe Firms’ Project Cost Density Comparison. Source: Own calculations using 1999–2005 data
from Bajari et al. (2014)
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common number for each type). Estimated entry thresholds were 0.562 and 0.857 for
fringe and non-fringe type, respectively. The results showed that the entry cost is 1.66%
of the engineer’s estimate for the fringe type and 2.57% for the non-fringe type.
Compared with the entry costs estimated by Krasnokutskaya and Seim (2011) under
non-selective entry, these results are slightly lower. This difference coincides with the
findings in Li and Zheng (2012): entry costs estimated under non-selective entry tend to
be higher than those estimated under selective entry. Thus, if unreasonably high entry
costs are estimated under a non-selective entry model, the researcher may want to check
whether the non-selective entry assumption is appropriate.

Conclusion

This study empirically investigated whether the entry process is selective in the
Caltrans procurement auctions data. The results favor selective entry among the
fringe firms. Given that prior literature showed a weaker player’s probability of
winning increases with the degree of selection (Sweeting and Bhattacharya
2015), this finding suggests that SB might have a higher likelihood of winning
than what prior empirical studies reported using non-selective entry models.
Thus, in order to achieve the policy objective of awarding 25% of total state-
funded contract dollars to SB, Caltrans may only need a bid discount level lower
than that derived from non-selective entry models in prior literature.

The full and selected project cost distributions were estimated using a nonparametric
method under a model allowing endogenous and potentially selective entry. Entry costs
were also estimated. The key limitation of the estimation method used in this paper was
that the methodology did not account for heterogeneity in project characteristics other than
the engineer’s estimate. Project heterogeneity that is unaccounted for may lead to different
underlying project cost distributions for different (nf, nn) bidding pools, which would
make combining data from various bidding pools in estimation inappropriate. This
methodology also did not provide an estimate of the domain of the bids and project costs.

This paper ties the existing theoretical literature on selective entry and auction
design to empirical evaluations of bid preference programs. By comparing the full
and selected project cost distributions to test whether the data support selective entry,
this paper adds a new method to the existing literature on empirical testing of different
entry models. Whereas empirical auction studies in the literature estimate models with
partially selective entry, the estimation methodology used in this study provides a first
example of empirically estimating such models nonparametrically.

Understanding how selective entry alters the empirical assessment of the effects of bid
preference programs on procurement costs and contract allocation is an important direc-
tion for future research. With the estimated model parameters, it would be interesting to
use numerical analysis (Sweeting and Bhattacharya 2015) to solve for the government’s
cost minimizing bid discount level that also satisfies its distributional goal.
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