
 

	

	

	

	

A	Harsh	Sun?	Staggered	Difference-in-Differences	Analyses	of	Community	Solar	

Adoption’s	Impacts	on	Residential	Energy	Expenditure	

	

	

by	

	

	

Zachary	C.	Marhanka	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Submitted	to	the	Distinguished	Majors	Program	

Department	of	Economics	

University	of	Virginia	

April	29th,	2022	

Advisor:	Jonathan	M.	Colmer	



 Marhanka 1 

Abstract	

Net	metering	policies	that	allow	solar	panel	adopters	to	“sell”	their	unconsumed	

energy	production	back	to	the	grid	are	driving	debates	in	the	solar	industry.	Experts	

question	the	efficiency	and	equitability	of	such	policies	due	to	their	implications	on	utility	

pricing	behavior	as	well	as	their	inaccessibility	for	marginalized	communities.	While	

community	solar	systems	facilitate	increased	access	to	solar	adoption,	little	research	

attempts	to	explore	the	implications	of	these	systems	on	electric	utility	retail	pricing.	In	

this	paper,	I	use	traditional	and	alternative	difference-in-differences	(DID)	analyses	to	

estimate	the	effect	of	county-level	community	solar	implementations	on	household	

electricity	expenditure	and	residential	retail	electricity	prices.	Utilizing	American	

Community	Survey	and	National	Renewable	Energy	Laboratory	datasets,	I	find	significant	

increases	in	residential	retail	electricity	prices	following	community	solar	integrations.	

However,	there	is	no	evidence	to	suggest	that	these	retail	price	increases	result	in	higher	

overall	electricity	expenditures	for	households	in	adopting	counties	nor	do	they	occur	

across	all	treated	county	groups.	Results	indicate	that	changing	utility	behavior	in	the	form	

of	price	increases	may	be	of	little	impact	on	aggregated	household	expenditures.	Further	

research	is	necessary	to	explore	the	direct	impacts	of	utility	pricing	reactions	on	non-

adopting	households	and	better	understand	the	household	impacts	of	solar	energy	

transitions.	
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1	Introduction		
As	global	energy	systems	increasingly	shift	away	from	fossil	fuel-based	forms	of	

energy	supply,	solar	photovoltaic	(PV)	technologies	serve	as	an	important	player	in	global	

and	domestic	energy	transitions.	In	the	US,	solar	PV	capacity,	or	the	maximum	output	of	

power	generation,	grew	from	just	0.34	gigawatts	(GW)	in	2008	to	97.2	GW	in	2021	(Solar	

Energy	in	the	United	States,	2021).	Yet,	with	such	rapid	adoption	there	is	an	observed	

disparity	in	the	demographic	distribution	of	adopters	and	the	technology’s	potential	

impacts	on	household	well-being	(Sunter	et	al.,	2019;	O’Shaughnessy	et	al.,	2021;	Barbose	

et	al.,	2021).	Traditional	net	metering	policies	that	historically	uplifted	solar	development	

specifically	come	under	debate	in	states	like	California,	and	were	threatened	with	

banishment	in	the	EU	due	to	their	potential	contributions	to	cost-shifting	and	distributive	

injustices	among	solar	adopters	and	non-adopters	(Canary	Media,	2022;	Clastres	et	al.,	

2019).	More	specifically,	non-adopters,	who	tend	to	be	household	renters,	of	lower	income	

levels,	less	educated,	and	of	racial	minority	groups	may	face	less	optimal	levels	of	well-

being	as	a	result	of	increased	solar	development	(Barbose	et	al,	2022).	While	new	efforts	in	

the	form	of	community	solar	or	shared	solar	systems	provide	an	avenue	to	reduce	these	

disparities	in	adoption	(Feldman	et	al,	2015),	little	research	explores	these	systems’	

contributions	to	pricing	behavior	and	the	larger	net	metering	debate.		

I	address	the	following	question	in	this	paper:	how	does	county-level	community	

scale	solar	adoption	affect	county-level	residential	electric	retail	pricing	and	household	

electricity	expenditures?	Using	two-way	fixed	effects	and	staggered	difference-in-

differences	estimators	by	Callaway	and	Sant’Anna	(2021),	I	take	advantage	of	National	

Renewable	Energy	Laboratory	(NREL)	project	and	retail	electricity	price	data	along	with	

American	Community	Survey	household	samples	to	answer	such	questions.	Despite	initial	

violations	of	necessary	parallel	trends	assumptions,	I	find	that	residential	electricity	prices	

increased	for	counties	that	adopted	community	solar	projects	under	altered	assignment	of	

comparison	groups	and	when	controlling	for	demographic	characteristics.	While	the	effects	

of	these	price	increases	are	insignificant	under	household	expenditure	impacts,	they	

suggest	a	behavior	of	utilities	to	increase	electricity	rates	in	accordance	with	increased	

utilization	of	solar	photovoltaic	adoption.		
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I	also	ask	the	following	supplemental	question:	how	is	community	solar	

implementation	associated	with	county-level	demographic	factors	like	race,	income,	

education,	and	policy	integrations?	I	find	that	counties	installing	community	solar	on	

average	have	higher	levels	of	educational	attainment,	higher	levels	of	household	income,	

and	a	smaller	proportion	of	their	population	identify	as	Black.	This	aligns	with	common	

residential	rooftop	adoption	demographic	findings	(Sunter	et	al.,	2019,	Barbose	et	al.,	

2022).	However,	these	characteristics	do	not	define	project	subscribers,	rather	the	

communities	in	which	these	projects	are	located.	

I	structured	this	paper	as	follows:	Section	2	outlines	underlying	mechanisms	behind	

my	investigation	of	adoption	impacts;	Section	3	describes	my	data	collection	and	

aggregation	methods;	Section	4	provides	the	specifications	of	my	empirical	methods;	

Section	5	reports	the	results	of	my	estimators;	Section	6	concludes	this	paper,	outlines	its	

limitations,	and	guides	future	research.		

	

2	An	Efficient	and	Equitable	Energy	Transition?			
2.1	Energy	Insecurity	

Energy	burden,	or	the	proportion	of	a	household’s	income	spent	on	utility	bills,	

tends	to	be	correlated	with	demographic	characteristics.	National	low-income	and	rural	

low-income	households	spend	7.2%	and	9%	of	their	annual	incomes	on	energy	utilities,	

respectively,	outpacing	the	national	average	of	3.3%	(Drehobl	&	Ross,	2016).	Home	

ownership	is	another	indicator	of	insecurity,	as	renters	face	a	higher	than	average	median	

energy	burden	of	4.0%.	These	disparities	are	worrying	in	light	of	rising	energy	prices;	

increasing	retail	prices	are	associated	with	climate	change	as	well	as	potential	

infrastructure	changes	resulting	from	the	energy	transition	(Carley	&	Konisky,	2020).	The	

nominal	residential	retail	price	of	electricity	was	projected	to	rise	from	12.87	cents	per	

kilowatt	hour	(kWh)	in	2018	to	14.32	cents/kWh	in	2022	(Short-term	Energy	Outlook,	

2021).	Therefore,	there	is	a	relevant	concern	for	changing	household	expenditure	priorities	

as	a	result	of	new	energy	needs,	especially	in	the	context	of	the	renewable	energy	

transition	and	shifts	away	from	fossil	fuels.		
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2.2	Residential	Solar	PV	Adoption	

PV	technology	broadly	consists	of	four	main	system	scales:	residential,	community,	

commercial,	and	utility.	Of	note	for	this	paper	are	community	systems	in	relation	to	

residential	solar	consumption,	opposed	to	commercial	or	other	non-residential	

beneficiaries	of	solar	power.	Residential	solar	generally	defines	solar	installations	that	are	

rooftop-based	and	produce	electricity	that	is	generally	consumed	by	a	singular	household	

who	owns	or	leases	the	system.	Compared	to	other	scales,	like	utility	systems,	residential	

solar	has	a	much	higher	lifetime	cost	per	unit	of	energy	production	—	defined	as	the	

levelized	cost	of	energy	(LCOE)	(The	Future	of	Solar	Energy,	2015).1	Although	

uncompetitive,	2.3	million	residential	rooftop	systems	were	installed	in	the	US	as	of	2019	

(Barbose	et	al.,	2021).	To	incentivize	further	adoption,	43	states	participate	in	net-metering	

practices	that	allow	for	consumers	subscribed	to,	or	owners	of	a	solar	PV	system,	to	count	

any	added	generation	to	the	grid	on	their	electricity	bill	(Stokes	&	Breetz,	2018,	p.	13;	Wan,	

1996).2	Despite	such	benefits,	residential	solar	tends	to	face	adoption	challenges	due	to	its	

unaffordable	fixed	costs,	reliance	on	property	ownership,	and	household	infrastructure	

challenges	(Carley	&	Konisky,	2020;	Crago,	2021).		

According	to	EnergySage	(2021)	the	cost	of	a	5-kW	system	in	a	state	like	Virginia	is	

$14,450	with	an	average	payback	of	12.89	years	—	an	unlikely	investment	for	households	

unable	to	meet	such	payments,	especially	for	those	with	potentially	high	discount	rates	

unwilling	to	invest	in	the	long-term.	Issues	also	stem	from	owner	and	tenant	split	

incentives	(Barbose	et	al.,	2021).	Landlords	may	not	face	direct	incentives	to	pay	for	

infrastructure	investments	that	could	increase	a	unit’s	energy	efficiency	and	subsequent	

bill	savings.	Households	without	suitable	roof	space,	like	in	an	apartment	complex,	lack	the	

ability	to	install	rooftop	panels	for	their	individual	apartment	(Carley	&	Konisky,	2020,	p.	

4).	Over	35%	of	Department	of	Housing	and	Urban	Development	low-income	projects	from	

1995-2015	consisted	of	multi-unit	complexes	with	21-50	housing	units	(Cook	&	Bird,	2018,	

p.	10).	As	a	result,	adoption	is	unsurprisingly	anticorrelated	with	existing	demographic	

                                                
1 See Ray, D. (2021). Lazard’s Levelized Cost of Energy Analysis—Version 15.0. 21. 
2 Net metering will be discussed at length in Section 2.4. 
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disparities	already	within	the	residential	solar	PV	space	(Barbose	et	al.,	2021;	

O’Shaughnessy	et	al.,	2021,	Heeter	et	al.,	2021a).		

Barbose	et	al.	(2022)	analyzed	the	demographic	state	of	household	adoption	and	

found	that	the	median	rooftop	adopter	income	was	$115k	per	year	compared	to	the	

national	median	of	$63k	in	2020.	Not	only	are	residential	adopters	associated	with	higher	

incomes,	but	they	are	also	statistically	more	educated	and	are	more-likely	to	live	in	

majority-white	census	tracts	(Barbose	et	al.,	2021,	p.	5;	Sunter	et	al.,	2019).	Rooftop	solar	

PV	has	the	potential	to	benefit	households	through	net-metered	bill	reductions.	Yet,	such	

benefits	are	largely	available	to	those	who	are	less	energy	insecure	(Sunter	et	al.,	2019,	p.	

74).	Given	these	challenges,	states	also	look	to	other,	larger	PV	systems,	like	community	or	

shared	solar,	that	overcome	the	limitations	of	rooftop-mounted	systems	conceptually	

allowing	for	greater	access	to	solar	adoption.	

	

2.3	Community	Scale	Solar	

Community	scale	solar	programs	represent	centralized,	on	or	off-site	systems	that	

allow	for	multiple	energy	consumers	to	subscribe	to	or	purchase	shares	of	produced	

energy.3	“Participants	who	finance	the	development	of	a	[community	solar]	project	receive	

compensation	for	electricity	generated	by	their	share	in	the	project,	typically	through	so-

called	‘virtual	net	metering’	(VNM)	schemes.	VNM	allows	subscribers	to	receive	economic	

returns	for	electricity	sold	to	a	utility	generated	from	the	share	of	the	solar	project	to	which	

they	are	subscribed”	(Chan	et	al.,	2017,	p.	2).	Such	systems	allow	households	to	consume	

solar	energy	when	it	would	otherwise	be	infeasible	due	to	previously	discussed	barriers.	

Community	scale	solar	systems	conceptually	have	cost	benefits	because	they	are	owned	

and	operated	jointly,	resulting	in	shared	installation	costs	among	consumers,	or	by	a	third-

party	who	bears	the	fixed	cost	investments	of	the	system	(Feldman	et	al.,	2015;	National	

Renewable	Energy	Laboratory,	2011).	Likewise,	community	scale	solar	does	not	require	

households	to	have	property-ownership	or	suitable	rooftop	infrastructure	to	consume	

                                                
3 These systems are also broadly referred to as “community shared solar” or “community solar.”  
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energy	because	the	system	is	usually	located	offsite	or	on	the	rooftop	of	a	multi-unit	

building	and	fed	into	a	utility’s	existing	services	(Feldman	et	al.,	2015).4		

Community	solar	is	looked	to	as	an	alternative	method	of	transitioning	households	

to	solar	PV	adoption.	Yet,	such	opportunities	do	not	entirely	reduce	concern	for	cost	

externalities	resulting	from	mass	adoption.	According	to	Crago	(2021),	existing	disparities	

in	solar	distribution	and	increasing	adoption	raise	further	concern	for	cross-subsidizations	

in	energy	markets.	Researchers	describe	this	to	be	when	solar	adopting	homes,	who	are	

more	likely	to	be	energy	secure	and	of	a	higher-incomes,	receive	benefits	by	selling	

electricity	to	the	grid	while	non-adopter,	and	more	likely	energy	burdened,	lower-income	

homes	pay	for	costlier	energy	(p.	10).	

	

2.4	Cost	Shifts	and	Solar	Adoption	

While	disparate	adoption	of	solar	PV	is	not	necessarily	inherent	to	the	technology,	

its	potential	facilitation	of	existing	energy	insecurities	is	of	concern	(O’Shaughnessy,	2021).	

Previously	mentioned	net	metering	programs	are	arguably	the	most	effective	policy	effort	

to	drive	the	adoption	of	distributed	solar	generation.5	While	a	benefit	for	households	

looking	to	reduce	their	electricity	bills	and	their	emissions	impacts,	net	metering	practices	

may	also	“dampen	demand	for	grid	supplied	power	and	thereby	cut	into	utilities’	profits”	

(Rule,	2015,	p.	119).	Compensation	for	volumetric	rates	in	US	dollars	per	kilowatt-hour	

($/kWh),	the	retail	rates	we	see	per	consumption	of	electricity,	often	cover	the	variable	and	

fixed	costs	accrued	by	utilities	in	addition	to	fixed	charges	on	consumer’s	bills	(Darghouth	

et	al.,	2022;	Rule,	2015).	Depending	on	the	scope	of	adoption	within	a	given	utility	

territory,	the	impacts	of	such	reductions	in	demand	may	be	manageable.	However,	large-

scale	adoption	of	distributed	solar	PV	may	lead	utilities	to	compensate	for	such	profit	

losses	by	petitioning	to	increase	their	retail	rates	of	electricity	or	fixed	consumer	charges.	

Retail	price	increases	may	incentivize	more	households	to	switch	to	distributed	solar	for	its	

                                                
4 In comparison to residential rooftop solar with a minimum estimated LCOE of $147/MWh, the minimum 
estimated LCOE of community solar is $63/MWh, a much more competitive cost with other energy supply 
technologies like coal ($65/MWh) (Ray, 2021). Third-party providers may therefore be incentivized by community 
solar’s cost effectiveness to make investments in the space. 
5 Distributed solar generation refers to solar production near the point of consumption. A utility scale solar array 
would be a centralized system since most of its consumers are likely not living in proximity to the system. See 
Distributed Generation of Electricity (2021). 
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consumption	benefits,	leading	to	higher	prices,	and	further	incentivizing	more	solar	

development	in	what	Rule	(2015)	referred	to	as	a	“death	spiral”	for	utilities	(p.	119).	As	a	

result,	utilities	across	the	nation	have	advocated	for	a	variety	of	policy	mechanisms	to	

manage	profit	losses:	fixed	monthly	fees	specific	to	solar	users,	increases	to	fixed	monthly	

charges	for	utility	customers,	reductions	in	the	compensatory	rate	paid	to	solar	prosumers,	

and	limits	on	distributed	generation	development	(Rule,	2015;	California	Public	Utilities	

Commission,	2022).	In	addition	to	combating	profit	loss,	such	advocacy	stems	from	a	

common	argument	surrounding	the	“fairness”	of	net	metering	policies	toward	non-adopter	

utility	consumers	who	are	paying	for	these	rate	increases	without	the	added	benefits	of	net	

metering.	These	cost	shifts	are	particularly	of	interest	due	to	the	disparate	adoption	of	

solar	panels	among	low-income,	racial	minorities,	and	renter	households	(Rule,	2015,	p.	

129,	Borenstein,	2017;	Barbose	et	al.,	2022;	Wan,	1996).		

Conceptually,	net	metering	may	create	cross-subsidies	in	which,	assuming	two	

groups	pay	equal	retail	rates,	one	group	(adopters)	do	not	pay	the	full	cost	of	a	service	for	a	

utility	to	supply	electricity	and	as	a	result,	unmet	costs	are	spread	across	all	consumers	

(non-adopters).	However,	cross-subsidies	are	not	unique	to	solar	integrations.	Utilities	

often	impose	direct	and	indirect	cross-subsidization	through	discounted	electricity	rates	to	

low-income	communities	and	for	rural	areas	where	it	is	costlier	to	deliver	energy	

(Faulhaber,	1975;	Rule,	2015).	In	the	case	of	solar	PV	adoption,	some	argue	that	the	rate	at	

which	prosumers	are	compensated	for	their	solar	generation	exceeds	its	avoided	cost	or	

the	value	of	that	produced	energy	to	the	grid.	While	true	cost-shift	effects	are	debated,	

research	that	measures	the	potential	cost	impacts	of	distributed	solar	development,	

specifically	among	community	shared	solar	integrations,	is	limited.	In	order	to	provide	a	

greater	understanding	of	the	energy	transition’s	impacts	on	households,	I	attempt	to	

measure	the	implications	of	increasingly	utilized,	and	arguably	more	accessible,	

community	shared	solar	systems	on	residential	retail	electricity	prices	and	household	

energy	expenditures.		
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2.5	Review	of	Literature	Frameworks	

Researchers	are	increasingly	focused	on	developing	sound	policy	solutions	for	solar	

PV	transitions.	O’Shaughnessy	et	al.	(2021)	studied	the	impacts	of	residential	solar-based	

policies	that	incentivize	uptake	by	low-to-moderate	income	(LMI)	households.6	The	

authors	measure	a	number	of	financing	incentives’	impacts	on	adoption	bias,	the	difference	

between	average	adopter	income	in	a	given	area	and	that	area’s	median	income.	They	then	

conduct	a	staggered	difference-in-differences	analysis	that	looks	at	quarterly	changes	in	

adoption	beginning	with	the	first	quarter	of	an	incentive’s	introduction.	7	However,	

O’Shaughnessy	et	al.	(2021)	explicitly	excluded	analyses	of	community	scale	solar	and	

solely	focus	on	household	adoption	of	residential	systems.		

In	addition	to	O’Shaughnessy	et	al.	(2021),	there	are	a	number	of	separate	analyses	

and	reports	dedicated	to	similar	understandings	of	household	adoption.	Sunter	et	al.	

(2019)	found	that	Black	and	Latino-majority	census	tracts	installed	69%	and	30%	less	

rooftop	PV	in	comparison	to	tracts	with	no	racial	majority,	respectively.	A	number	of	

reports	from	the	Lawrence	Berkeley	National	Laboratory	(LBNL)	and	NREL	also	contain	

useful	analyses	of	solar	PV	adoption	and	market	trends.	Heeter	et	al.	(2021)	conducted	a	

brief	analysis	in	their	report	of	community	solar	that	estimated	the	impacts	of	subscription	

models	on	household	energy	burden.		

	 Likewise,	academic	as	well	as	industry	reports	contribute	to	the	incidence	of	cross-

subsidization	occurring	from	increased	adoption	of	solar	PV	integrations	(Satchwell	et	al.,	

2014;	Johnson	et	al.,	2014;	Clastres	et	al.,	2019).	Satchwell	et	al.	(2014)	employed	a	model	

that	found	average	electricity	rates	rose	anywhere	from	0.1%	to	2.7%	depending	on	

region-specific,	solar	PV	market	penetration	over	a	20-year	period.	Likewise,	over	this	20-

year	period,	utility	revenue	reductions	were	greater	than	utility	cost	reductions	in	high	

penetration	levels	(10%	of	total	retail	sales).8	Johnson	et	al.	(2014)	found	that	while	

residential	solar	PV	adopters	experienced	a	58%	drop	in	bill	charges,	non-adopters	

experienced	only	a	1%	increase	in	bill	charges	over	a	15-year	modelling	period,	easing	

                                                
6 These are households whose income is less than 80% of an area’s median income 
7 O’Shaughnessy et al. (2021) utilize staggered treatment difference-in-differences models of Callaway and 
Sant’Anna (2021) to conduct their analyses. Their paper will be discussed at length in Section 4. 
8 Satchwell et al. (2014) note that a 10% sales penetration at the time of writing was non-existent. Roughly 2% of 
sales were allocated to utilities in 2014 (p. viii). 
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potential	concerns	for	substantial	cost	shifts.	Clastres	et	al.	(2019)	estimated	the	level	of	

cross-subsidies	occurring	in	France	under	changes	in	the	ratio	of	produced	solar	energy	

that	is	either	consumed	or	sold	by	a	household.	They	find	that	while	cross-subsidizations	

exist,	they	are	relatively	insignificant	due	to	the	relative	penetration	of	solar	in	the	

country’s	overall	energy	market.	As	a	result,	analyses	of	community	solar	impacts	may	be	

hindered	by	project	penetration	in	local	energy	markets.	While	a	community	may	adopt	a	

project,	the	relative	size	of	that	project	may	have	more	or	less	of	an	impact	on	utility	

behavior.	

This	research	paper	aims	to	build	upon	the	work	of	O’Shaughnessy	et	al.	(2021),	and	

other	researchers	dedicated	to	solar	demographics	and	cross-subsidy	research,	to	estimate	

the	impacts	of	system	adoption	on	energy	expenditure	(Barbose	et	al.,	2021;	Heeter	et	al.,	

2021;	Satchwell	et	al.,	2014;	Johnson	et	al.	2014;	Clastres	et	al.,	2019).	This	differentiates	

from	analyses	of	rooftop	residential	solar	by	looking	at	the	adoption	impacts	of	community	

scale	solar.	Given	the	hypothetical	and	observed	benefits	of	community	scale	solar,	it	

stands	to	reason	how	impactful	these	systems	are	on	cross-subsidization	debates.	As	will	

be	discussed,	I	focused	my	research	around	three	central	data	categories:	community	solar	

installation	data,	electricity	price	data,	and	demographic	data	—	all	of	which	found	

influence	from	the	previously	mentioned	research.	

	

3	Data	Collection	&	Aggregation	
3.1	Solar	Installation	

I	collected	community	solar	project	location	and	capacity	data	from	the	NREL	

Sharing	the	Sun	Community	Solar	Project	Data	December	2021	Update	(Chan	et	al.,	2022).9	

The	Sharing	the	Sun	dataset	contains	information	on	individual	project	name,	location	by	

state	and	“city”,	capacity	(kW-AC),	utility	provider,	and	year	of	implementation	from	2006-

2019.	Data	after	2019	was	removed	to	maintain	consistency	with	demographic	and	price	

data.	The	current	dataset	observes	these	measures	across	2,028	projects	located	in	39	

                                                
9 The National Renewable Energy Laboratory has hosted a dataset of community solar projects since July, 2018. The 
December 2021 update can be found here: https://data.nrel.gov/submissions/185. 
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states,	including	Washington,	DC.	A	public-use	Homeland	Infrastructure	Foundation-Level	

Data	(HIFLD)	collective	of	cities,	counties,	and	state	names,	along	with	their	respective	FIPS	

codes,	allowed	for	the	identification	of	county	locations	for	Sharing	the	Sun	projects.10	This	

was	necessary	to	match	the	dataset	with	county-level	electricity	cost	and	demographic	data	

described	in	the	following	sections.	

	

Table	1	

Community	Solar	Project	Characteristics	

Project	Characteristics	

	 Total	Capacity	(kW-AC)	 2,140,013	

	 Median	Capacity	 1,000	

	 Mean	Capacity	 1,718.89	

	 Max	Capacity	 81,000	

	 Min	Capacity	 2.31	

	

Median	Year	of	
Interconnection	 			2017	

Note.	AC	refers	to	alternating	current.	

 
Outside	of	geographic	matching,	there	are	a	number	of	limitations	with	the	dataset.	

NREL	acknowledges	that	the	list	is	not	comprehensive	and	may	contain	errors	among	

localities.	I	identified	any	projects	with	naming	errors,	mostly	misspelled	or	missing	

locality	names,	using	the	United	States	Geological	Survey	during	my	initial	data	

consolidation.11	Likewise,	the	dataset	only	contains	information	on	project	locations	and	

not	project	subscriber	locations.	This	limited	my	empirical	analysis	to	measure	precise	

impacts	on	the	households	who	subscribe	to	a	given	project.	Rather,	I	estimate	the	project	

integration	impacts	on	the	county	hosting	a	project.	It	is	also	of	note	that	projects	are	not	

identified	to	either	a	regulated	or	deregulated	market	system.	Under	a	regulated	system,	

                                                
10 Data is available here: https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::cities-and-towns-
ntad/about. 
11 Listed cities often contained unincorporated localities requiring verification through the United States Geological 
Survey National Map Corps: https://www.usgs.gov/core-science-systems/ngp/tnm-corps. 
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utility	prices	are	set	by	a	public	commission	and	may	not	be	directly	impacted	by	increased	

project	adoption	(Electricity	Explained,	2022).	This	will	be	discussed	further	in	Section	6	

and	Appendix	C.	

Table	1	describes	the	general	characteristics	of	the	selected	dataset.	Total	project	

capacity	sits	around	2	gigawatts	(GW)	for	the	selected	projects.	I	also	identified	a	skew	

toward	larger	projects	above	1	megawatt	(MW)	as	mean	capacity	sits	around	2	MW.	This	is	

especially	visible	considering	the	range	of	project	sizes	as	the	largest	81	MW	project,	which	

is	located	in	Almyra,	Arkansas,	is	35,000	times	as	large	as	the	smallest	listed	project	located	

in	Vancouver,	Washington.	Table	2	describes	the	total	capacities	of	the	top	four	largest	

community	solar	adopting	states	by	capacity.	Minnesota	has	the	most	generation	capacity	

with	668,267	kW	(668	MW).	However,	its	average	capacity	is	only	2,169	kW	compared	to	a	

state	like	Florida	with	an	extremely	low	number	of	projects	but	a	higher	average	project	

size	around	11,230	kW.	This	is	representative	of	a	broader	trend	with	some	states	

installing	many	smaller	projects	and	others	hosting	a	small	number	of	large-scale	projects.	

	

Table	2	

Top	Four	States	by	Total	Capacity	(kW-AC)		

States	with	Most	Capacity	(kW-AC)	

	 Minnesota	(N=308)	 668,267.05	
	 Massachusetts	(N=293)	 454,263.17	

	 New	York	(N=162)	 188,259.01	
	 Florida	(N=13)	 145,987.38	

Note.	 The	 following	 table	 describes	 the	 top	 four	 states	 by	 total	
installed	capacity	for	the	years	2006	to	2019.		

	
3.2	Household	Energy	Expenditure		

	 I	collected	household-level	average	monthly	electricity	cost	data	from	the	American	

Community	Survey	(ACS)	5-year	Public	Use	Microdata	Sample	estimates	(PUMS)	for	the	

end-years	2009	to	2019.	The	use	of	ACS	PUMS	data	was	influenced	by	the	Department	of	

Energy’s	Low-Income	Energy	Access	Data	(LEAD)	Tool,	which	utilizes	2018	PUMS	5-year	
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estimates	to	visualize	energy	expenditure	and	energy	burden	data	at	the	census	tract	

level.12		

Conventional	ACS	estimates	consist	of	1,	3,	and	5-year	samples.	5-year	ACS	

estimates	define	data	collection	over	a	60-month	period	and	allow	for	data	collection	in	

Census	Bureau	defined	areas	of	less	than	65,000	people.	All	year	values	represent	the	end-

year	of	the	sample	period,	so	the	sample	for	the	2009	end-year	represents	data	collected	

from	2005	to	2009,	2010	for	the	years	2006	to	2010,	etc.	Therefore,	the	estimates	are	

period	estimates	and	not	point-in-time	estimates.13	Conventional	1-year	ACS	samples	are	

limited	to	data	collection	in	geographic	areas	with	populations	of	65,000	people	or	more	in	

a	given	12-month	period.	This	limited	the	ability	to	measure	demographic	information	for	

less	populated	areas	of	the	country	and	was	especially	challenging	given	the	scale	of	project	

implementation.	Only	87	of	the	417	aggregated	counties	with	projects	have	at	least	65,000	

people	within	their	boundaries.	Therefore,	ACS	5-year	estimates	provide	a	solution	to	these	

accessibility	challenges	at	the	expense	of	current	estimations.	

The	ACS	PUMS	sample	is	bound	to	Public	Use	Microdata	Areas	(PUMA)	which	

comprise	around	100,000	people.	A	PUMA	is	bound	to	state-lines,	and	generally	follows	

county	or	census	tract	lines.	PUMAs	contain	samples	of	households	within	smaller	counties	

(less	than	65,000	people)	unlike	the	ACS	and	these	localities	are	aggregated	under	a	single	

PUMA	when	their	population	is	under	100,000	people.	As	a	result,	a	PUMA	may	contain	

multiple	counties,	or	vice	versa	if	a	county	contains	a	multiple	of	100,000	people.	While	

period	collection	for	the	PUMS	follows	similar	methods	as	the	conventional	ACS,	1-year	

PUMS	estimates	only	sample	1%	of	PUMA	households	compared	to	5%	of	households	

under	the	5-year	estimates.	I	chose	to	use	the	5-year	estimate	for	its	larger	sample	and	to	

maintain	continuity	with	data	collected	from	the	conventional	5-year	ACS	estimates.	The	

variable	of	interest,	average	monthly	household	electricity	costs,	are	collected	at	the	PUMA	

level.	I	discuss	the	specific	aggregation	and	crosswalk	methodologies	from	PUMA	to	

county-level	measurements	in	Appendix	B.	

                                                
12 The Department of Energy LEAD Tool can be accessed here: https://www.energy.gov/eere/slsc/maps/lead-tool 
13 3-year estimates were discontinued in 2015, so they were not applicable to this analysis. 
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The	collected	electricity	cost	data	excludes	households	whose	electricity	costs	are	

combined	with	their	monthly	rent	and	who	did	not	record	any	electricity	costs	for	the	

collected	period.	All	end-year	cost	values	were	further	adjusted	for	inflation	using	the	

Bureau	of	Labor	Statistics	(BLS)	Consumer	Price	Index	for	All	Urban	Consumers:	Electricity	in	

the	US	City	Average	(2022).14	All	reported	dollar	values	are	in	constant	2013	US	Dollars.	I	

also	adjusted	individual	5-year	estimates	to	measure	constant	end-year	dollars.15	

	

3.3	Residential	Electricity	Retail	Pricing		

I	collected	panel	data	of	electricity	retail	prices	from	a	NREL	organized	dataset	of	

utility	rates	and	their	zip	codes	from	the	Open	Energy	Data	Initiative	(OEDI)	for	the	years	

2013	to	2019.	The	dataset	is	a	consolidation	of	rates	from	utilities	recognized	by	the	US	

Energy	Information	Administration’s	(EIA)	Annual	Electric	Power	Industry	Report,	Form	

EIA-86116	and	the	Hitachi	Energy	Velocity	Suite	(Open	Energy	Data	Initiative,	2020;	U.S.	

Electricity	Companies	and	Rates:	Look-Up	by	Zip	code,	2020).17	OEDI	datasets	define	utilities	

by	investor	owned	utilities	(IOU)	and	non-investor	owned	utilities	(Non-IOU).	Non-investor	

owned	utilities	consist	of	publicly	owned	utilities	and	cooperatives.	IOUs	and	Non-IOUs	

were	aggregated	together	due	to	the	mixed	ownership	structure	of	the	observed	

community	solar	projects.	The	initial	dataset	consisted	of	residential	rates	in	$/kWh	for	

utility	providers	by	zip	code	and	state.	I	used	aggregation	methods	similar	to	those	used	

with	ACS	PUMS	monthly	electricity	cost	data	to	define	county-level	electric	retail	data.	I	

relied	on	the	MCDC	for	zip	code	and	county	crosswalks	through	the	Geographic	

Correspondence	Engine	to	conduct	similar	aggregations.				

Table	3	describes	my	main	outcomes	of	interest	across	sample	periods	and	

treatment	groups.	Across	both	outcomes	and	treatment	groups,	overall	real	expenditures	

and	retail	prices	increased.	In	the	case	of	household	electricity	costs,	expenditures	

increased	around	$45	monthly,	with	a	significant	difference	in	price	changes	between	2009	

                                                
14 BLS Consumer Price Index data can be collected here: https://fred.stlouisfed.org/series/CUSR0000SEHF01 
15 For instance, for the end-year 2009, household costs from 2005 to 2009 were adjusted to 2009 US Dollars. 
16 The EIA-861 form is an annual census of US electric utilities from 1990-2020. See Annual Electric Power 
Industry Report (2021). 
17 Data for 2019 utility retail prices can be found here: https://data.openei.org/submissions/4042. Data for 2013 to 
2018 utility retail prices can be found here: 
https://catalog.data.gov/dataset?publisher=National%20Renewable%20Energy%20Laboratory 
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and	2019	for	the	two	treatment	groups.	Households	in	never	treated	counties	saw	on	

average	a	change	of	$47	in	monthly	expenditures	compared	to	treated	counties’	change	of	

$43.	In	the	case	of	retail	prices,	neither	treatment	group	significantly	differed	in	the	$/kWh	

rate	paid	for	consumption	from	2013	to	2019.	These	price	increases	are	indicative	of	

existing	understandings	of	energy	pricing,	but	may	be	a	result	of	multiple	factors	including	

increases	in	extreme	temperatures	and	prices	of	alternative	fuel	sources,	like	natural	gas	

and	coal.	These	factors	will	also	be	discussed	in	Section	6	in	reference	to	my	findings.	

	

Table	3	

Summary	Statistics	for	Outcomes	of	Interest	by	Treatment	Group	

Summary	Statistics	

	 	
Year	 Household	Electricity	

Cost	($/mo)	
	 Residential	Retail	

Price	($/kWh)	
		 		 		 		 		 		 		 		

Treated	 	 Starting	Year	
(2009	or	2013)	

120.22		
(1.232)	

	 0.114		
(0.00124)	

N=	4,345	 	
2019	 163.39		

(1.368)	 	

0.129		
(0.00139)	

	 	
Difference	 43.17		

(0.876)	 	
0.015		

(0.00081)	
		 		 		 	 	 		 	 	
	 	 	 	 	 	 	 	

Not	Treated	 	 Starting	year	
(2009	or	2013)	

126.83		
(0.497)	 	

0.108		
(0.00065)	

N=	30,202	 	
2019	 173.54		

(0.493)	 	

0.121		
(0.00069)	

	 	
Difference	 46.71		

(0.355)	 	
0.014		

(0.00056)	

	 	

Difference	b/w	
groups	

3.542		
(1.001)	 	

0.00159		
(0.00152)	

		 		 P-value	 <0.001	 	 0.107	
Note.	The	p-values	were	calculated	under	a	t-distribution.	Household	electricity	costs	cover	the	years	2009	to	
2019,	retail	prices	cover	2013	to	2019.	
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3.3	Demographic	Data	

I	collected	additional	income	and	other	demographic	data	through	the	US	Census	

Bureau	American	Community	Survey	5-year	sample.	The	collected	data	are	described	in	

Table	4.	All	demographic	variables	align	with	the	previous	discussion	of	ACS	5-year	

estimates.	All	year	values	represent	the	end-year	of	the	sample	period.		

Table	4	describes	the	demographic	characteristics	of	“not-yet-treated”	units	across	

comparison	groups.	18	Not-yet	-treated	groups	consist	of	county	units	that	are	never	treated	

and	those	that	will	eventually	be	treated.	Column	(1)	reports	characteristics	across	

nationwide	observations	in	county	cross	sections	that	did	not	yet	receive	a	treatment	and	

that	will	never	receive	a	treatment.	Column	(2)	reports	these	demographics	for	

posttreatment	units	of	county	panels.	Treated	counties	on	average	contain	more	people,	

are	of	higher	incomes,	have	higher	levels	of	educational	attainment,	and	less	black	

residents	than	their	not-yet-treated	counterparts.	While	not	an	analysis	of	project	

subscribers,	this	aligns	with	general	adoption	characteristics	emphasized	by	researchers	

(Sunter	et	al.,	2019;	Barbose	et	al.,	2022).	It	is	of	note	that	households	are	more	likely	to	be	

renters	and	more	likely	to	identify	as	Latino	compared	to	untreated	counties.	This	

contrasts	with	underrepresentation	of	Latinos	among	traditional	residential	adopters	

(Barbose	et	al.,	2022).	However,	these	statistics	neither	characterize	the	subscribers	to	

these	systems	nor	do	they	identify	these	characteristics	relevant	to	other	neighboring	

counties	or	greater	state	characteristics.	Appendix	A.1	contains	density	charts	of	county-

level	characteristics	by	treatment	conditions	and	visual	analyses	to	further	this	analysis.	

	

	 	

                                                
18 The utilization of “not-yet-treated” units will be explained in Section 4. 
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Table	4	

Demographic	Characteristics	of	Counties	by	Treatment	Group	

	 Demographic	Characteristics	

	 	 Not-yet-treated	 	 Treated	 	 p-value	
		 		 (1)	 		 (2)	 	 (3)	
Housing	Characteristics	 		 		 		 	 		
	 Population	 91,411	 	 224,677	 	 <0.001	

	 Households		 34,882	 	 85,610	 	 <0.001	
		 %	Owner	Households	 72	 	 70	 	 <0.001	
Income	Characteristics	 	 	 	 	 	

	 Median	Income	(2013	$)	 47,405	 	 59,309	 	 <0.001	

	 GINI	Coefficient	 0.440	 	 0.440	 	 0.500	
Educational	Attainment	 	 	 	 	 	

	 %	Less	than	Highschool	 15	 	 11	 	 <0.001	
	 %	Highschool	Educated	 35	 	 31	 	 <0.001	
	 %	Some	College	 29.9	 	 31.3	 	 <0.001	
	 %	Bachelor's	Degree	 13.1	 	 17.3	 	 <0.001	
	 %	Graduate	Degree	 6.9	 	 9.8	 	 <0.001	

Racial	Characteristics	 	 	 	 	 	

	 %	White		 84	 	 85	 	 0.007	

	 %	Black		 9	 	 7	 	 <0.001	

	 %	Asian	 1.21	 	 1.91	 	 <0.001	

	 %	American	Indian	 1.88	 	 1.19	 	 <0.001	
	 %	Native	Hawaiian	 0.09	 	 0.11	 	 0.005	
	 %	Other	 2.05	 	 2.89	 	 <0.001	
	 %	Hispanic	or	Latino	 8	 	 11	 	 <0.001	
	 %	Not	Hispanic	or	Latino	 92	 	 89	 	 <0.001	

Note.	All	values	are	averages	of	county	panel	data.	The	p-values	are	calculated	under	a	t-distribution.	

	

4	Empirical	Methodology	
My	approach	in	this	paper	centers	around	commonly	practiced	and	newly	

researched	difference-in-differences	(DID)	models	to	estimate	the	effect	of	community	

solar	adoption	on	retail	electricity	rates	and	household	electricity	expenditure	under	



 Marhanka 19 

staggered	treatment	adoption	designs.	Opposed	to	standard	DID	models,19	treated	counties	

do	not	contain	the	same	post	and	pre-treatment	periods	because	these	counties	are	

exposed	to	adoption	across	a	range	of	years.	As	a	result,	the	methodology	of	this	paper	

most	closely	follows	empirical	specifications	with	more	than	two	time	periods.		

		 The	measurement	of	effect	will	follow	three	separate	estimation	models.	The	first	is	

a	“static”	two-way	fixed	effects	(TWFE)	DID	model.	Given	the	variation	in	treatment	timing,	

the	models	will	utilize	the	time-based	fixed	effects	to	account	for	heterogeneity	across	

years.	Likewise,	a	county	fixed	effects	variable	will	account	for	time-invariant	

heterogeneity.		The	second	is	an	estimate	of	group-specific	effects,	or	the	estimator	of	the	

effect	of	project	implementation	by	a	projects’	year	of	interconnection.	The	third	follows	an	

event	study	estimator	that	attempts	to	measure	the	treatment	effect	of	project	adoption	

with	varying	lengths	of	exposure	to	projects.	The	two	latter	models	follow	the	

specifications	of	Callaway	and	Sant’Anna	(2021)	and	take	influence	from	their	application	

in	O’Shaughnessy	et	al.	(2021).	This	paper	will	delineate	from	prior	literature	as	it	attempts	

to	analyze	the	impacts	of	community	solar	on	household	expenditure,	as	opposed	to	

rooftop	solar	adoption.		

	

4.1	“Static”	Two-Way	Fixed	Effects	Difference-in-Differences	Model	

	
	 𝑦"# = 	 𝛾" +	𝜆# +	𝛽**𝐷"# + 	𝜇𝑋"# +	𝜖"# 	 (1)	

	 	 	

where	𝑦"# 	is	the	outcome	of	interest,	𝛾" 	is	a	county	fixed	effect,	𝜆# 	is	a	year	fixed	effect,	𝐷"# 	is	

a	dummy	variable	equal	to	1	if	county	𝑖	hosts	a	community	solar	project	in	year	𝑡.	𝑋"# 	is	a	

vector	of	county-	and	year-level	control	variables	for	county	population,	median	county	

income,	proportions	of	ACS-designated	racial	identities,	educational	attainment,	and	

percentages	by	household	ownership.	The	coefficient	𝛽**	is	the	post-treatment	difference-

in-difference	estimator	for	the	effect	of	project	adoption	on	𝑦"# .	

                                                
19 See Callaway and Sant’Anna (2021), p. 2. Common DID designs follow two groups of units with clearly defined 
pre and post-treatment periods that allow for measurement of changes in an outcome of interest before and after one 
group is exposed to the treatment. Under a counterfactual assumption that both groups would have experienced 
similar changes in the outcome of interest, researchers can measure an average effect of the treatment on the treated 
(ATT). 
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	 While	two-way	fixed	effects	(TWFE)	are	widely	used	in	analyses	of	difference-in-

differences	models,	recent	econometric	literature	highlights	a	number	of	theoretical	

problems	with	TWFE	in	the	application	of	staggered	DID	models.	Specifically,	when	

treatment	implementations	occur	at	different	times	across	different	groups	and	such	

treatment	effects	are	dynamic	or	unequal.	This	paper’s	setting	is	particularly	concerning,	as	

counties	do	not	all	receive	the	same	level	of	adoption.	As	described	in	Table	1,	community	

solar	projects	range	in	size	from	smaller	2	kW	projects	to	80,000	kW	(80	MW)	projects.	The	

hypothetical	influence	of	these	varying	treatment	intensities	may	cause	unequal	treatment	

effects	across	counties.	It	may	also	be	the	case	that	parallel	trends	do	not	hold	until	

conditioned	on	observed	covariates,	as	seen	with	the	variations	reported	in	Table	4	

(Callaway	&	Sant’Anna,	2021;	Goodman	&	Bacon,	2021;	Sun	&	Abraham,	2021;	Baker	et	al.,	

2022).		

	

4.2	Group-Specific	Effects	

	 In	acknowledgement	of	potential	biases	arising	from	project	adoption	under	a	

TWFE	model,	I	incorporate	Callaway	and	Sant’Anna’s	(2021)	identification,	aggregation,	

and	estimation	methods	to	measure	more	robust	and	flexible	causal	effects.	Under	the	

assumption	that	treatment	is	irreversible	and	anticipation	for	treatment	is	negligible,20	the	

unconditional	treatment	effect	of	a	specific	treatment	group	is	estimated	under	the	

following	regression:	

	

	 𝑦"# = 	𝛼2
3,# + 𝛼5

3,# ∙ 𝐺3 + 𝛼8
3,# ∙ 1{𝑇 = 𝑡} + 𝛽3,# ∙ =𝐺3 × 1{𝑇 = 𝑡}? + 𝜖3,#	 (2)	

	

where	𝑦"# 	is	the	outcome	of	interest	for	a	county	in	treatment	group	period	𝑔	and	time	

period	𝑡,	where	𝑡 = 1,… , 𝒯.	Under	a	model	estimating	average	monthly	household	

electricity	costs,	𝒯 = 11.	Under	a	model	estimation	of	the	retail	price	of	electricity,	𝒯 = 7.	

No	units	are	treated	when	𝑡 = 1.	𝐺3 	is	a	dummy	variable	that	is	equal	to	one	if	a	unit	is	

treated	in	period	𝑔.	Treatment	is	determined	when	a	county	implements	at	least	one	

                                                
20 I assume households and utilities do not actively change their monthly average electricity costs and retail prices in 
anticipation of a project coming online.  
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project	in	a	given	year.21	1{𝑇 = 𝑡}	is	a	dummy	variable	equal	to	one	if	a	unit	is	observed	at	

time	period	𝑡.	When	the	assumption	that	unconditional	parallel	trends	based	on	a	

comparison	of	“not-yet-treated”	county	observations	holds,22	𝛽3,# = 𝐴𝑇𝑇(𝑔, 𝑡).	𝐴𝑇𝑇(𝑔, 𝑡)	is	

the	true	“group-time	average	treatment	effect”	such	that,	

	

	 𝛢𝑇𝑇(𝑔, 𝑡) = 𝔼[𝑌#(𝑔) − 𝑌#(0)|𝐺3 = 1]	 (3)	

	

where	𝐴𝑇𝑇(𝑔, 𝑡)	is	the	expected	difference	between	the	outcome	of	interest	for	treated	

counties	at	time	𝑡	and	the	counterfactual	outcome	at	time	𝑡	had	such	counties	never	been	

treated.	If	I	include	covariates	such	that	parallel	trends	are	conditional,	I	have	the	following	

model:	

	

	 𝑦"# = 	𝛼O2
3,# + 𝛼O5

3,# ∙ 𝐺3 + 𝛼O8
3,# ∙ 1{𝑇 = 𝑡} + 𝛽P3,# ∙ =𝐺3 × 1{𝑇 = 𝑡}? + 𝜋O ∙ 𝑋"# + 𝜖̃3,# 	 (4)	

	

where	𝑋"# 	is	a	vector	of	panel	controls	including	population,	median	income,	percentage	of	

population	identifying	as	white,	percentage	of	population	25	years	and	older	with	a	high	

school	degree,	and	an	index	of	income	inequality.	Following	the	summary	statistics	in	Table	

4,	it	is	reasonable	to	assert	that	the	distribution	of	covariates	between	treated	and	

untreated	counties	are	not	equal	and	therefore	necessary	to	condition	on	should	we	

assume	parallel	trends	among	our	treatment	groups.		

	 The	estimation	of	𝐴𝑇𝑇(𝑔, 𝑡),	assuming	conditional	parallel	trends	with	a	comparison	

to	county	observations	who	are	not-yet-treated,	follows	Callaway	and	Sant’Anna’s	(2021)	

doubly	robust	estimation	method.23	The	aggregation	of	group-time	treatment	effects	into	a	

singular	parameter	undergoes	a	simple	average:	

	

                                                
21 The treatment condition for counties does not differentiate between counties with many projects and counties with 
only a single project. This was due to the varying number of projects and overall capacities that accumulated in 
counties overtime. Future researchers should attempt to implement treatment intensity within their analysis.  
22 See Callaway and Sant’Anna (2021), p. 8-9. “Not-yet-treated” comparisons consist of all never treated and 
eventually treated units that have not yet received treatment. This comparison is particularly useful when analyzing 
observations solely among eventually treated counties. 
23 See Callaway and Sant’Anna (2021), p. 20, for a detailed breakdown of the doubly robust estimator for not-yet-
treated comparison groups. 
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𝜃3T(𝑔O) =

1
𝒯 − 𝑔O + 1U𝐴𝑇𝑇(𝑔O, 𝑡)

𝒯

#V3O

	 (5)	

	

where		𝜃3T(𝑔O)	is	the	aggregated	group-specific	effect	for	units	treated	in	period	𝑔O	for	all	

post-treatment	periods.	For	an	overall	aggregation	of	treatment	effects	across	all	groups,	

the	following	aggregation	is	employed:	

	

	
𝜃3TW =U𝜃3T(𝑔)𝑃(𝐺 = 𝑔|𝐺 ≤

𝒯

3∈𝒢

𝒯)	 (6)	

	

where	𝜃3TW 	is	the	average	effect	of	county	adoption	of	community	solar	projects	across	all	

counties	that	adopted	a	project.	𝑃(𝐺 = 𝑔|𝐺 ≤ 𝒯)	is	a	weight	giving	preference	to	larger	

groups,	or	time	periods	that	saw	the	more	project	interconnections.	In	addition	to	group-

specific	estimates	of	average	treatment	on	treated	individuals,	I	employed	event	study	

specifications	in	Callaway	and	Sant’Anna	(2021)	to	visualize	pre	and	post-treatment	

estimations	of	treatment	exposure	effects	on	retail	electricity	prices	and	average	monthly	

household	electricity	costs.		

	

4.4	Event	Study/Dynamic	Treatment	Effects	

	 Callaway	and	Sant’Anna’s	(2021)	aggregations	also	allow	for	the	measurement	of	

treatment	effects	based	on	county	exposure	to	project	implementations.		

	

	 𝜃\T(𝑒) =U1{𝑔 + 𝑒 ≤ 𝒯}𝑃(𝐺 = 𝑔|𝐺 + 𝑒 ≤
3∈𝒢

𝒯)𝐴𝑇𝑇(𝑔, 𝑔 + 𝑒)	 (7)	

	 	 	

	

	

	
𝜃\TW =

1
𝒯 − 1U𝜃\T(𝑒)

𝒯^5

\V_

	 (8)	
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where	𝑒	represents	the	time	of	exposure	for	treatment	periods	such	that	𝑒 = 𝑡 − 𝑔.	𝜃\T(𝑒)	

is	the	average	effect	of	adopting	a	community	solar	system	𝑒	periods	after	adopting	a	

project	for	all	groups	that	are	observed	for	exactly	𝑒	periods.	1{𝑔 + 𝑒 ≤ 𝒯}	is	a	binary	

variable	that	allows	the	function	to	consider	just	average	group-time	treatment	effects	and	

𝑃(𝐺 = 𝑔|𝐺 + 𝑒 ≤ 𝒯)	allows	for	a	group-size	weighted	average	of	the	group-time	𝐴𝑇𝑇(𝑔, 𝑡).	

𝜃\T(𝑒)	can	be	further	aggregated	to	measure	the	average	effect	across	all	events	where	𝜃\TW 	

is	a	simple	average	of	all	estimated	event	times.	The	numerical	and	graphical	results	of	

these	estimators	are	reported	in	Section	5.	

	

5	Results	&	Discussion	
	 In	the	following	section,	estimation	results	are	broken	down	into	two	parts:	the	first	

are	TWFE	DID	and	group-specific	effects	as	described	in	Callaway	and	Sant’Anna	(2021);	

the	second	is	an	event	study	describing	doubly	robust	ATT	estimates	resulting	from	

treatment	exposure	for	counties	adopting	at	least	one	project.	All	analyses	are	conducted	

with	not-yet-treated	unit	comparisons	on	a	national	and	county-level.	

	

5.1	Difference-in-Differences	and	Group-Specific	Effects	

	 Table	5	reports	the	results	of	the	estimated	effects	of	the	project	adoption	on	

average	monthly	household	expenditures	for	counties	under	traditional	TWFE	DID	and	

staggered	treatment	group-specific	effects	estimates.	These	are	outlined	in	Equation	(1)	

and	Equations	(2),	(4),	(5),	and	(6),	respectively.	Column	(1)	identifies	estimates	under	

unconditional	models	utilizing	a	national	comparison.	I	find	significant	negative	effects	

under	both	the	TWFE	and	group-specific	aggregated	effects.	However,	testing	of	parallel	

trends	suggest	a	significant	violation	of	the	assumption	that	national,	not-yet-treated	

control	units	and	treated	units	would	have	followed	parallel	trends.	As	a	result,	the	effect	of	

these	estimates	is	likely	biased,	invalidating	their	causality.24	The	potential	differences	in	

county	characteristics,	when	referring	to	those	listed	under	Table	4,	may	be	a	potential	

                                                
24 Under a violation of the parallel trend assumption, the expected or average outcome of treated and comparison 
groups may not follow similar trends overtime. This would lead to a bias in the measurement of the post-treatment 
effect 𝛽**  and  𝛽3,#. 



 Marhanka 24 

source	of	deviation	in	assuming	parallel	trends.	Column	(2)	reports	the	conditional	

estimates,	which	still	violate	the	assumptions	of	parallel	trends	between	comparison	

groups.	To	further	test	for	potential	deviations	among	national	samples	and	treated	

counties,	I	reduce	all	comparisons	to	eventually	treated	counties.	Columns	(3)	and	(4)	

report	unconditional	and	conditional	treatment	estimates	utilizing	not-yet-treated	county	

units	as	a	comparison.	Under	altered	comparisons,	the	once	significant	effects	reported	

under	column	(1)	are	insignificant.	Parallel	trends	are	weakly	validated	under	a	

conventional	5%	significance	level.	These	results,	although	limited,	acknowledge	the	

insignificant	impacts	of	community	solar	systems	given	average	system	sizes	on	household	

electricity	costs.	It	may	be	the	case	that	current	adoption	and	system	sizes	are	not	large	

enough	to	cause	any	significant	changes	in	utility	revenue	and	therefore	pressure	to	

increase	retail	prices.	However,	this	is	disputed	in	Table	6.	It	is	further	important	to	note	

that	these	estimates	do	not	distinguish	between	adopter	and	non-adopter	households,	

limiting	the	ability	to	measure	any	potential	cost-shifts	that	may	occur.	The	data	may	be	

confounded	by	other	potential	factors,	like	weather	conditions,	existing	installed	

residential	solar	systems,	and	regulatory	indicators	that	may	impact	variations	in	

household	costs	and	even	consumption	across	units.	The	similarities	between	adopting	

counties	may	eliminate	such	variations	seen	at	larger	scopes	of	comparison.25	

		

	 	

                                                
25 The vignette for Callaway and Sant’Anna (2021) can be found here: https://bcallaway11.github.io/did/index.html 
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Table	5		

Two-Way	Fixed	Effects	and	Group-Specific	Effects	for	Average	Household	Electricity	
Expenditure	

	 Average	Monthly	Cost	of	Electricity	($/mo)	
	 National	 	 	 County	

		 (1)	 (2)	 		 		 (3)	 (4)	

TWFE	 -2.251**	
(0.877)	

-1.454**	
(0.651)	 		 		 0.003	

(0.624)	
0.0832	
(0.516)	

Group-
Specific	
Effect	

-0.860***	
(0.2365)	

-0.320	
(0.233)	

	 	 0.287	
(0.427)	

0.493	
(0.463)	

𝑔 = 2010	 -7.145	
(6.566)	 ---	 	 	 -4.020	

(4.887)	 ---	

𝑔 = 2011	 -6.034***	
(1.676)	

-2.768	
(1.927)	

	 	 -3.276*	
(1.682)	

-1.041	
(1.939)	

𝑔 = 2012	 -2.225	
(1.503)			

1.487	
(1.461)	

	 	 -0.342	
(1.912)	

1.690	
(2.260)	

𝑔 = 2013	 -3.728	
(2.271)	

-0.583	
(2.046)	

	 	 -1.931	
(2.207)	

-0.977	
(1.706)	

𝑔 = 2014	 0.031	
(1.090)	

0.923	
(1.108)	

	 	 0.604	
(1.170)	

0.554	
(1.153)	

𝑔 = 2015	 1.301*	
(0.707)	

1.360*	
(0.704)	

	 	 1.557**	
(0.744)	

1.547*	
(0.846)	

𝑔 = 2016	 -1.531***	
(0.487)	

-1.155**	
(0.545)	

	 	 -0.752	
(0.615)	

-0.985	
(0.641)	

𝑔 = 2017	 -0.237	
(0.3303)	

-0.0110	
(0.308)	

	 	 0.920**	
(0.466)	

1.108**	
(0.485)	

𝑔 = 2018	 -0.612	
(0.497)	

-0.509	
(0.485)	

	 	 0.797*	
(0.484)	

0.811	
(0.607)	

𝑔 = 2019	 -1.633***	
(0.427)	

-1.629***	
(0.457)	

	 	 ---	 ---	

N	 34,444	 31,289	 	 	 4,164	 3,781	
Parallel	
Trends	 0.000	 0.001	 	 	 0.000	 0.110	

Controls	 No	 Yes	 		 		 No	 Yes	
Note.	Standard	errors	are	listed	in	parentheses.	Data	are	collected	from	2009-
2019.	 The	 row	𝑔 = 2010	 is	 not	 listed	 under	 (2)	 and	 (4)	 due	 to	 missing	
covariate	 data	 for	 2010.	 Columns	 (1)	 and	 (2)	 use	 all	 not-yet-treated	
observations	as	a	control	group	from	nationwide	counties.	Columns	(3)	and	
(4)	use	not-yet-treated	county	observations	as	controls,	allowing	for	better	
parallel	 trend	assumptions.	𝑔 = 2019	observations	are	not	 included	in	(3)	
and	(4)	since	by	𝑡 = 2019	there	would	be	no	untreated	county	observations.	
*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01	
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Table	6	reports	TWFE	and	group-specific	effects	of	community	solar	adoption	on	

residential	retail	prices	of	electricity.	Columns	(1)	and	(2)	report	that	on	average,	adoption	

of	community	solar	increases	retail	prices	of	electricity	charged	to	households	under	TWFE	

specifications.	This	effect	is	insignificant	under	county-level	comparisons.	Group-specific	

aggregations	vary	between	geographic	comparisons	and	conditional	estimates.	There	are	

improved	assumptions	of	parallel	trends	when	moving	from	columns	(1)	to	(4)	such	that	

columns	(3)	and	(4)	report	an	insignificant	p-value	that	does	not	reject	parallel	trends	

under	the	unconditional	and	conditional	county	models.	The	column	(4)	group-specific	

effect	reports	that	on	average	a	county	that	implements	a	community	solar	project	sees	a	

$0.002	per	kilowatt	hour	($/kWh)	increase	in	the	residential	retail	price	of	electricity.	

Counties	that	adopted	projects	in	2015	drove	this	aggregated	increase,	as	we	see	

residential	retail	prices	for	these	counties	rose	by	almost	$0.01	per	kWh.	For	an	average	

household	that	consumes	893	kWh	of	electricity	in	a	month,26	a	cent	difference	in	an	area’s	

residential	retail	price	would	lead	to	an	increase	of	around	$108	in	a	household’s	annual	

electricity	expenditures.	My	discussion	of	cross-subsidization	in	Section	2	support	this	

estimate,	as	utilities	may	look	to	improve	their	revenue	potential	through	consumer	wide	

price	increases	due	to	reduced	income	from	net	metering	customers.	This	is	in	line	with	

Johnson	et	al.	(2014)	who	estimated	only	modest	increases	in	non-adopter	expenditures.	

This	may	further	highlight	the	potential	biases	within	the	reported	insignificant	and	

negative	expenditures	estimated	in	Table	5.	The	opposite	effects	of	adoption	on	direct	

household	expenditures	and	retail	prices	may	also	contain	a	number	of	omitted	

considerations	like	household	consumption	changes	and	county	energy	efficiency	

improvements.	Likewise,	rises	in	electricity	prices	may	be	due	to	external	price	increases	in	

other	fuel	sources	—	like	natural	gas	—	that	are	correlated	with	shifts	to	renewable	energy	

adoption,	regulatory	policies,	and	even	the	presence	of	other	solar	systems	which	are	not	

considered	in	this	analysis.	These	are	discussed	more	in	Section	6.	

	 	

                                                
26 See Frequently Asked Questions (2021).  
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Table	6	

Two-Way	Fixed	Effects	and	Group-Specific	Effects	for	Residential	Retail	Electricity	Price	

	 Residential	Retail	Price	($/kWh)	
	 National	 	 	 County	

		 (1)	 (2)	 		 		 (3)	 (4)	

TWFE	 0.00335***	
(0.00103)	

0.00274**	
(0.00109)	 		 		 0.00051	

(0.00067)	
0.00070	
(0.00067)	

Group-
Specific	
Effect	

0.001**	
(0.0004)	

0.0006	
(0.0005)	

	 	 0.0011	
(0.0009)	

0.002**	
(0.0008)	

𝑔 = 2014	 0.0029	
(0.0025)	

0.0029	
(0.0027)	

	 	 0.0017	
(0.0026)	

0.0019	
(0.0028)	

𝑔 = 2015	 0.005***	
(0.0011)	

0.0046***	
(0.0012)	

	 	 0.0058***	
(0.0014)	

0.0063***	
(0.0015)	

𝑔 = 2016	 0.0003	
(0.0006)	

-0.0005	
(0.0006)	

	 	 0.0010	
(0.0013)	

0.0008	
(0.0011)	

𝑔 = 2017	 0.0003	
(0.0006)	

0.0001	
(0.0006)	

	 	 0.0009	
(0.0009)	

0.0002	
(0.0009)	

𝑔 = 2018	 0.000	
(0.0007)	

-0.0008	
(0.0008)	

	 	 0.0003	
(0.0011)	

0.0011	
(0.0009)	

𝑔 = 2019	 -0.0002	
(0.0013)	

-0.0007	
(0.0012)	

	 	 ---	 ---	

N	 21,748	 21,736	 	 	 2,606	 2,606	
Parallel	
Trends	 0.001	 0.017	 	 	 0.170	 0.286	

Controls	 No	 Yes	 		 		 No	 Yes	
Note.	Standard	errors	are	 listed	in	parentheses.	Data	are	collected	from	2013-2019.	
Columns	(1)	and	(3)	are	unconditional	models.	Columns	(2)	and	(4)	are	conditional	on	
demographic	characteristics.	Columns	(1)	and	(2)	use	all	not-yet-treated	columns	as	a	
control	 group	 from	 nationwide	 counties.	 Columns	 (3)	 and	 (4)	 use	 not-yet-treated	
county	observations	as	controls,	allowing	for	better	parallel	trend	assumptions.	*	p	<	
0.10,	**	p	<	0.05,	***	p	<	0.01	
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5.2	Event	Study:	Exposure	to	System	Adoption	

	 Tables	7	and	8	report	the	exposure-specific	and	aggregated	event	study	estimates	

from	Equations	(7)	and	(8).	Total	exposure	periods	are	limited	to	𝑒 = 9	for	household	

expenditure	estimates	and	𝑒 = 5	for	retail	price	estimates.	In	Table	7,	columns	(1)	and	(2)	

follow	similar	invalidations	of	causality	due	to	rejection	of	both	unconditional	and	

conditional	parallel	trends.	The	parallel	trend	assumptions	in	column	(4)	are	met	under	a	

conventional	5%	significance	level.	The	aggregated	effect	of	treatment	exposure	on	

household	expenditure	is	insignificant,	but	significantly	large	for	counties	with	the	longest	

exposure	to	project	adoption.	These	trends	align	with	the	reported	estimates	in	Table	5.	

Outside	of	shared	bias	and	invalidation	of	parallel	trends,	both	tables	report	generally	

negative	impacts	of	adoption	on	expenditure	with	increased	validity	when	restricting	

comparisons	to	eventually	treated	county	groups.	Figure	1	visualizes	the	event	study	plot	

reported	in	column	(4).		No	significant	pre-treatment	effects	are	reported	for	project	

adoption.	Individual	event	times	are	shown	to	not	be	significantly	different	than	zero,	as	

visualized	with	the	95%	confidence	bands	of	each	estimate.	It	is	also	important	to	note	the	

fanning	of	confidence	bands	with	event	time.	This	is	likely	due	to	the	increasing	number	of	

recorded	projects	in	the	collected	panel	data.	Fewer	projects	were	installed	in	earlier	

periods,	leading	to	a	smaller	sample	of	observations	for	projects	experiencing	treatment	

over	increased	lengths	of	exposure.	Counties	that	experienced	treatment	for	at	least	𝑒 = 7	

periods	saw	on	average	a	decrease	of	$9	in	average	monthly	household	electricity	

expenditures,	however,	such	effects	may	be	biased	due	to	a	limited	number	of	treated	

counties.	In	the	Appendix,	Figures	7,	8,	and	9	visualize	the	event	study	estimates	under	the	

violation	of	parallel	trends	for	columns	(1),	(2),	and	(3).	Despite	violations	of	parallel	

trends,	these	figures	continue	to	show	pre-treatment	trends	centered	around	zero.		
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Table	7	

Treatment	Exposure	Effects	for	Average	Household	Electricity	Expenditure	

	 Average	Monthly	Cost	of	Electricity	($/mo)	
	 National	 	 County	

	 (1)	 (2)	 	 (3)	 (4)	

Event	Study	 -4.049***	
(1.327)	

-0.856	
(0.8693)	

	 -1.565	
(1.513)	

-0.534	
(1.138)	

𝑒 = 0	 -0.4533***	
(0.1452)	

-0.309**	
(0.142)	

	 0.039	
(0.185)	

0.132	
(0.190)	

𝑒 = 1	 -0.497**	
(0.226)	

-0.119	
(0.242)	

	 0.335	
(0.393)	

0.541	
(0.456)	

𝑒 = 2	 -0.717**	
(0.350)	

-0.072	
(0.343)	

	 0.049	
(0.632)	

0.426	
(0.769)	

𝑒 = 3	 -1.392***	
(0.525)	

-0.286	
(0.536)	

	 0.630	
(0.957)	

1.319	
(1.144)	

𝑒 = 4	 -0.619	
(0.838)	

1.152	
(0.835)	

	 -0.922	
(1.332)	

0.549	
(1.580)	

𝑒 = 5	 -2.835**	
(1.246)	

0.574	
(1.258)	

	 -3.308*	
(1.837)	

-0.571	
(2.600)	

𝑒 = 6	 -6.753***	
(1.564)	

-1.667	
(1.688)	

	 -2.798	
(2.057)	

1.937	
(3.960)	

𝑒 = 7	 -7.539***	
(1.881)	

-1.987	
(1.930)	

	 -4.447	
(2.945)	

-8.604***	
(3.084)	

𝑒 = 8	 -10.012***	
(2.973)	

-4.992*	
(2.948)	

	 -3.663	
(7.674)	 ---	

𝑒 = 9	 -9.671	
(7.214)	 ---		 		 ---	 ---	

N	 34,444	 31,289	 	 4,164	 3,781	
Parallel	Trends	 0.000	 0.001	 	 0.000	 0.110	
Controls	 No	 Yes	 		 No	 Yes	
Note.	Treatment	exposure	effects	are	measured	under	Event	Study	where	𝑒	represents	the	number	
of	periods	a	unit	is	exposed	to	the	treatment.	Standard	errors	are	listed	in	parentheses.	Columns	
(1)	 and	 (3)	 are	 unconditional	 models.	 Columns	 (2)	 and	 (4)	 are	 conditional	 on	 demographic	
characteristics.	 Columns	 (1)	 and	 (2)	 use	 all	 not-yet-treated	 columns	 as	 a	 control	 group	 from	
nationwide	counties.	Columns	(3)	and	(4)	use	not-yet-treated	county	observations	as	controls	to	
attain	conditional	parallel	trends.	*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01	
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Figure	1	

Conditional	event	study	of	average	effect	by	length	of	exposure	for	average	household	
electricity	expenditure	in	county	comparison	

	
	 	 Note.	Event	study	estimates	were	found	to	be	valid	due	to	sufficient	parallel	trends.	

	

Under	Table	8,	nationwide	comparisons	continue	to	be	biased	due	to	the	rejection	of	

parallel	trends	outlined	in	Section	5.1.	However,	columns	(3)	and	(4)	of	the	county-level	

comparison	report	validation	of	parallel	trends.	Under	the	conditional	event	study,	I	

estimate	that	on	average,	the	exposure	of	a	county	to	community	solar	adoption	leads	to	an	

increase	of	$0.004	per	kWh	in	the	residential	retail	price	of	electricity.	This	is	much	larger	

than	the	estimated	increases	in	Table	6.	The	aggregated	estimate	also	appears	to	be	driven	

by	counties	with	at	least	2	to	3	periods	of	exposure,	which	is	consistent	across	columns	(3)	

and	(4).		
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Table	8	

Treatment	Exposure	Effects	on	Residential	Retail	Electricity	Price	

	 Residential	Retail	Price	($/kWh)	
	 National	 	 County	

		 (1)	 (2)	 		 (3)	 (4)	

Event	Study	 0.003***	
(0.001)	

			0.0025***	
(0.001)	 	 				0.0037**	

(0.0018)	
			0.0042**	
(0.002)	

𝑒 = 0	 0.0005	
(0.0004)	

0.0002	
(0.0004)	 	 0.0000	

(0.0005)	
0.0002	
(0.0004)	

𝑒 = 1	 0.0011***	
(0.0004)	

0.0007*	
(0.0004)	 	 0.0007	

(0.0009)	
0.0013	
(0.0008)	

𝑒 = 2	 0.0013***	
(0.0005)	

0.0008	
(0.0006)	 	 				0.0035**	

(0.0016)	
				0.0036**	
(0.0017)	

𝑒 = 3	 0.0028***	
(0.0009)	

				0.0021**	
(0.0009)	 	 			0.0074***	

(0.0025)	
			0.0086***	
(0.0028)	

𝑒 = 4	 0.0060	
(0.0016)	

			0.0056***	
(0.0016)	 	 0.0068	

(0.0047)	
0.0071	
(0.0058)	

𝑒 = 5	 0.0062*	
(0.0035)	

0.0059*	
(0.0035)	 	 ---	 ---	

N	 21,748	 21,736	 	 2,606	 2,606	
Parallel	Trends	 0.001	 0.017	 	 0.170	 0.286	
Controls	 No	 Yes	 		 No	 Yes	
Note.	𝑒	represents	the	number	of	periods	a	unit	is	exposed	to	the	treatment.	Standard	errors	are	
listed	 in	 parentheses.	 Columns	 (2)	 and	 (4)	 are	 conditional	 on	 demographic	 characteristics.	
Columns	(1)	and	(2)	use	all	not-yet-treated	columns	as	a	control	group	from	nationwide	counties.	
Columns	 (3)	 and	 (4)	 use	 not-yet-treated	 county	 observations	 as	 controls,	 allowing	 for	better	
parallel	trend	assumptions.	*	p	<	0.10,	**	p	<	0.05,	***	p	<	0.01	

	

Figure	2	visualizes	the	county	aggregations,	highlighting	further	insignificant	pre-

treatment	trends	and	positive	treatment	effects	post-adoption.	Increased	exposure	to	the	

treatment	also	shows	increased	effects	on	retail	price	with	an	almost	$0.01	per	kWh	

increase	in	counties	exposed	for	at	least	𝑒 = 3	periods.	This	further	aligns	with	the	utility	

mechanisms	discussed	in	Section	2	and	5.1.	Across	the	estimated	effects	of	adoption	on	

retail	prices,	there	is	a	consistent	trend	of	positive	effects.	There	is	a	consistently	stronger	

validation	of	parallel	trends	associated	with	county-level,	not-yet-treated	comparisons,	

supporting	the	potential	omission	of	variables	biasing	the	nationwide	analysis.	Likewise,	
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the	described	differences	in	Table	3	highlight	the	strength	of	analyses	concerning	

electricity	rates	as	opposed	to	household	expenditure.	This	is	inevitably	due	to	the	

dependence	of	household	expenditures	on	electricity	consumption	opposed	to	the	rate-

based	measure	of	electricity	prices.	

	

Figure	2	

Event	studies	of	average	effect	by	length	of	exposure	for	residential	retail	price	of	electricity	in	
county	comparison	group.	
	

												 	
																										(a)	Unconditional	Retail	Price	 	 	 																				(b)	Conditional	Retail	Price	

Note.	Event	study	estimates	were	found	to	be	valid	due	to	sufficient	parallel	trends.	

	

6	Conclusion	
	 In	this	paper,	I	contribute	to	the	growing	exploration	of	the	impact	of	solar	

photovoltaic	transitions	on	households.	I	do	this	through	an	investigation	of	the	effects	of	

county-level	community	solar	system	adoption	on	household	expenditure	and	electricity	

prices.	I	take	advantage	of	traditional	and	alternative	empirical	methods	to	measure	

treatment	effects	under	staggered	difference-in-differences	designs.	Under	a	two-way	fixed	

effects	difference-in-differences	model,	I	find	negative	trends	across	nationwide	

comparison	groups	under	estimations	of	household	expenditure,	although	consistently	

significant	and	positive	effects	of	adoption	on	residential	electricity	retail	prices.	Due	to	

potential	biases	in	TWFE	estimates	under	staggered	treatment	designs,	I	employ	the	
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methodologies	of	Callaway	and	Sant’Anna	(2021)	to	conduct	estimates	of	group-specific	

and	event	study	effects	of	adoption	(Baker	et	al.,	2022;	Callaway	&	Sant’Anna,	2021;	Sun	&	

Abraham,	2020;	Goodman-Bacon,	2021;	Jakiela,	2021).	Under	a	conditional	framework	and	

the	restriction	of	comparison	groups	to	eventually-treated	county	units,	I	find	significant	

and	positive	effects	on	residential	retail	prices	of	electricity	across	both	group	and	event	

study	aggregations.	I	also	find	insignificant	effects	on	average	monthly	household	energy	

expenditure.	The	opposing	estimations	of	insignificant	or	even	negative	effects	of	adoption	

on	household	expenditure	compared	with	positive	effects	on	residential	retail	prices	

highlight	potential	unconsidered	factors	in	my	analysis.	If	these	price	increases	are	present,	

research	highlights	a	concern	that	energy	insecurity	within	these	counties	may	be	

exacerbated	should	energy	insecure	communities	continue	to	face	disparate	benefits	of	

solar	adoption.	

Variation	in	energy	consumption,	potentially	through	energy	efficiency	

improvements	across	time	and	counties,	is	a	plausible	source	of	decreases	in	household	

electricity	expenditures.	It	is	also	likely	the	case	that	the	relative	penetration	of	community	

solar	in	electricity	markets	is	not	significant	enough	to	influence	utility	or	household	

behavior.	However,	the	noticeably	positive	impacts	on	retail	prices	under	county	

comparisons	acknowledge	the	hypothesized	impacts	of	solar	PV	adoption	on	prices.		

I	note	the	consistent	violation	of	parallel	trends	under	the	nationwide	comparison,	

even	when	controlling	for	demographic	characteristics	which	were	found	to	vary	across	

groups.	As	a	result,	causal	estimates	should	not	be	inferred	from	nationwide	comparisons,	

and	should	be	taken	lightly	for	county	comparisons.	The	inclusion	of	potential	confounding	

factors,	such	as	installed	residential	capacity	or	energy	market	penetration,	time	and	

location	variant	temperature	data,	alternative	fuel	prices,	as	well	as	policy	or	regulatory	

controls,	may	be	useful	for	improving	the	precision	and	unbiasedness	of	the	estimated	

treatment	effects.		

The	presence	of	other	installed	residential	systems	within	a	county	should	be	

considered	for	future	research.	If	community	solar	adoption	is	highly	correlated	with	other	

residential	systems,	it	would	be	necessary	to	control	for	these	systems	to	specifically	

isolate	community	solar	adoption	effects.	Another	potential	factor,	as	mentioned	in	Section	

3,	is	the	indication	of	regulated	and	deregulated	markets.	If	a	county	is	subject	to	a	
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regulated	market	where	price	changes	are	decided	by	a	commission	or	some	other	

government	entity,	then	direct	impacts	of	adoption	are	not	plausible.	Appendix	C	provides	

an	analysis	of	household	expenditure	and	retail	price	impacts	when	conditioning	on	an	

indicator	of	general	state	regulated	or	deregulated	markets.	Lastly,	alternative	fuels	that	

contribute	to	electricity	generation,	like	natural	gas,	may	also	influence	changes	in	the	

$/kWh	rate	for	households.	The	inclusion	of	these	prices	should	be	considered	by	future	

researchers.	Despite	my	findings,	applying	full	trust	in	the	causality	of	the	estimated	effects	

of	community	solar	adoption	is	not	convincing	given	these	limitations.	

This	thesis	does	not	directly	measure	described	cost-shifts	or	cross-subsidizations	

from	one	group	to	another	(non-adopters	to	adopters).	It	instead	indicates	potential	price	

changes	that	may	affect	all	households	within	a	given	location.	While	this	provides	a	

potential	concern	for	non-adopters,	I	cannot	truly	isolate	such	effects.	Future	research	

should	attempt	to	measure	the	direct	impacts	of	project	implementation	in	order	to	

contribute	to	expanding	explorations	of	the	efficiency	and	equity	of	solar	energy	

transitions.		
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Appendix	A:	Figures	and	Tables	

A.1	Visualizations	of	Demographic	Characteristics	

 Figure	3	visualizes	the	median	household	income	of	counties	across	treatment	

groups.	Outside	of	the	noted	differences	in	average	median	income,	both	groups	appear	to	

have	right	ward	skews	in	their	distributions.	This	does	not	mean	that	treated	county	

subscribers	to	projects	also	have	higher	levels	of	income.	It	is	plausible	that	projects	

located	in	these	higher	income	counties	may	focus	on	supplying	energy	to	marginalized	

households.	However,	there	is	no	indication	that	the	alternative	is	also	true.		

 

Figure 3 

Density Chart of County Median Income by Treatment Group 

 
	

	 Figure	4	visualizes	the	percent	of	county	households	identified	as	being	owned	by	

their	tenants.	Although	significantly	different,	treated	and	not-yet-treated	counties	do	not	

see	large	variation	in	ownership.	Treated	counties	have	a	higher	proportion	of	renters,	

which	may	align	with	the	goals	of	community	solar	in	eliminating	adoption	barriers	for	

renters.	Without	exact	subscriber-level	data,	it	is	plausible	that	these	projects	do	not	

specifically	cater	toward	renter	households	in	these	counties.	Both	groups	are	slightly	

skewed	to	the	left,	noting	higher	renter	levels	in	some	counties.	
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Figure	4	

Density Chart of Percent of Tenant Owned Households by Treatment Group 

 
 

Figure	5	identifies	the	educational	attainment	of	these	households.	While	the	

percentage	of	the	population	25	years	or	older	with	a	high	school	degree	is	actually	larger	

in	not-yet-treated	counties,	the	differences	in	educational	attainment	appear	to	be	a	result	

of	treated	counties’	overall	higher	levels	of	educational	attainment.	Both	counties	have	

rightward	skews	in	their	proportions	of	Bachelor’s	Degree	holders.	However,	treated	

counties	show	a	much	higher	density	of	counties	with	25	to	40%	of	their	population	

attaining	a	college	degree.	Figure	6	supplements	the	insignificant	findings	of	income	

inequality	using	the	GINI	coefficient.	Both	treatment	groups	sit	around	a	coefficient	of	0.44	

with	relatively	symmetrical	distributions.	Further	research	should	seek	to	understand	

subscriber-level	demographics	compared	to	overall	county	or	other	geographic	level	

characteristics	to	better	understand	how	community	solar	systems	seek	to	alleviate	

common	disparities	in	residential	solar	adoption.	
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Figure	5	

Density Chart of Percent of Population Identified as High School and College Graduates by 
Treatment Group 

 
 

  

Figure	6	

Density Chart of Income Inequality (GINI Coefficient) by Treatment Group 
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	 Income	inequality	across	time	highlights	an	interesting	dynamic	among	non-

adopting	and	adopting	counties.	Figure	7	shows	a	steady	increase	in	average	income	

inequality	among	both	treated	and	never	treated	counties.	There	is	also	a	divergence	

overtime,	as	the	difference	in	inequality	overtime	appears	to	increase,	but	this	difference	is	

not	significant	as	outlined	in	Table	4.		

	

Figure	7	

Panel	of	Income	Inequality	(2010-2019)	
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A.2	Event	Study	Visualizations	for	Invalid	Parallel	Trends	Assumptions	

Figure	8	

Event	Studies	of	Average	Effect	by	Length	of	Exposure	for	Average	Household	Electricity	
Expenditure	in	Nationwide	Comparisons.	
 

	
				(a)	Unconditional	 	 	 	 														(b)	Conditional	

Note.	Event	study	estimates	were	found	to	be	invalid	due	to	rejection	of	parallel	trends.	

	

Figure	9	

Unconditional	Event	Study	of	Average	Effect	by	Length	of	Exposure	for	Average	Household	
Electricity	Expenditure	in	County	Comparison	
 

	
Note.	Event	study	estimates	were	found	to	be	invalid	due	to	insufficient	parallel	trends.	
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Figure 10 

Event	Study	of	Average	Effect	by	Length	of	Exposure	for	Residential	Retail	Price	of	Electricity	
in	Nationwide	Comparison.	
	

	
											(a)	Unconditional		 	 	 																																	(b)	Conditional	

Note.	Event	study	estimates	were	found	to	be	invalid	due	to	insufficient	parallel	trends.	
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A.3	Regression	and	Graphical	Results	Restricted	to	Adopting	States	
In addition to county comparisons, I conducted analyses that limited comparison groups 

to only states with treated counties. All statewide comparisons violated parallel trends, and 

therefore were not considered in the reported results. However, I provide their event study 

graphs. 

 

Figure	11	

Event	Study	of	Average	Effect	by	Length	of	Exposure	for	Average	Household	Electricity	
Expenditure	in	Adopting	States.	

	
													(a)	Unconditional		 	 	 	 																		(b)	Conditional	

Note.	Event	study	estimates	were	found	to	be	invalid	due	to	insufficient	parallel	trends.	

 
Figure	12	

Event	Study	of	Average	Effect	by	Length	of	Exposure	for	Residential	Retail	Electricity	Price	in	
Adopting	States	

	
												(a)	Unconditional																																			 	 																(b)	Conditional	

Note.	Event	study	estimates	were	found	to	be	invalid	due	to	insufficient	parallel	trends.	
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Appendix	B:	PUMA-County	Crosswalk	
I	relied	on	the	PUMA-to-county	matching	of	the	Missouri	Census	Data	Center	

(MCDC)	Geographic	Correspondence	Engine	to	allocate	PUMA-based	household	electricity	

cost	measurements	to	their	respective	county’s	(Geocorr	2018	–	MCDC).	The	consolidation	

relied	on	population	allocation	factors	using	2010	Census	population	counts	described	

below:	

	

	
Αhi =

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛hi
∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛hiq
hV2

	 (B.3)	

	

where	𝑐	is	a	county	index,	𝑝	is	a	PUMA	index,	and	𝑙	is	the	maximum	number	of	counties	in	a	

given	PUMA.	Αhi	is	the	allocation	factor	for	county	𝑐	in	PUMA	𝑝.	Average	PUMA	electricity	

costs	are	calculated	as	a	weighted	average	of	Census	household	weights.	A	further	

weighted	average	is	taken	to	determine	county	weights	for	any	counties	that	intersect	two	

different	PUMAs	or	multiple	PUMAs	contained	within	a	single	county	for	final	county-level	

average	monthly	household	electricity	costs:	

	

	 𝐶𝑜𝑢𝑛𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡h =
Αhi ∗ 𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠i

∑ Αhi ∗ 𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠iz
iV2

	 (B.4)	

	

	 #	𝑜𝑓	𝐶𝑜𝑢𝑛𝑡𝑦	𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠h = Αhi ∗ 𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠i	 (B.5)	

	

	
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡� =

∑ 𝐶𝑜𝑢𝑛𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡h ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡h�
hV2

∑ 𝐶𝑜𝑢𝑛𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡h�
hV2

	 (B.4)	

	

where	𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠i	is	the	total	number	of	households	in	PUMA	𝑝	and	

𝐶𝑜𝑢𝑛𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡h	is	the	proportion	of	PUMA	𝑝	households	in	county	𝑐	for	all	households	in	

PUMA	𝑝.	𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡�	is	the	final	weighted	average	household	monthly	electricity	cost	

for	the	completely	aggregated	county	𝐶.	𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡h	is	the	average	monthly	electricity	
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cost	for	households	in	county	c.	𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡�	is	the	fully	aggregated	weighted	average	

of	monthly	electricity	costs	of	households	in	county	𝐶.	

	

Appendix	C:	Controlling	for	Regulation	in	Retail	Price	Analysis		
	 The	following	section	includes	an	additional	control	variable	in	the	TWFE	DID	and	

aggregated	models	to	indicate	whether	a	state	hosts	fully	regulated	or	deregulated	energy	

markets.27	Table	9	shows	improved	validation	of	parallel	trends.	However,	the	group-

specific	and	event	study	estimates	show	reduced	significance	in	aggregate.	Counties	first	

adopting	in	2015	continue	to	show	significant	effects.		

	

Table	9	

DID	Effect	Estimates	on	Residential	Retail	Electricity	Price	with	Deregulation	Control	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

                                                
27 States were identified under the US EPA Policies and Regulations (2022). 

Residential	Retail	Price	($/kWh)	

TWFE	 0.00070		
(0.00067)	 	

Group-Specific	
Effect	

0.0013	
(0.0009)	

Event	
Study	

0.0036	
(0.0022)	

𝑔 = 2014	 0.0016	
(0.0030)	 𝑒 = 0	 0.0001	

(0.0004)	

𝑔 = 2015	 0.0046**	
(0.0019)	 𝑒 = 1	 0.0009	

(0.0008)	

𝑔 = 2016	 0.0005	
(0.0013)	 𝑒 = 2	 0.0024	

(0.0019)	

𝑔 = 2017	 0.0003	
(0.0010)	 𝑒 = 3	 0.0072**	

(0.0036)	

𝑔 = 2018	 0.0012	
(0.0008)	 𝑒 = 4	 0.0074	

(0.0060)	

N	 2,606	
0.545	
Y	

Parallel	Trends	
Controls	
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While	it	appears	necessary	in	future	applications	to	apply	regulatory	controls,	the	

following	estimations	are	inaccurate.	Variation	within	state	energy	market	policies	is	an	

important	factor	to	consider,	which	this	analysis	does	not	do.	Regulation	is	not	necessarily	

static	within	a	deregulated	state.	This	is	especially	important	considering	that	community	

solar	projects	are	under	a	mix	of	potentially	regulated	IOUs	and	municipally-owned	Non-

IOUs	(US Electricity Markets 101, 2022).	Future	research	would	need	to	identify	the	specific	

regulatory	identity	of	individual	utilities	or	project	communities	in	order	to	truly	control	

for	price	effects.	

	


