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Abstract

In this paper, we investigate the minimum effort coordination game under incomplete

versus complete information. While prior research extensively explores the case of com-

plete information, we seek to answer: how does private information about individual payoffs

impact coordination? To do so, we develop a model to formalize the case of incomplete

information. Equilibrium refinement using potential and stochastic potential suggests that

holding costs constant, incomplete information decreases effort in the short run. Addition-

ally, this effect will be negligible in the long run when players converge to an equilibrium.

We test our hypothesis using a laboratory experiment. We show that in earlier experimental

periods, extremely high cost pairings choose lower efforts on average. However, in the long

run, holding costs of effort in a group constant, players converge to similar efforts in both

the incomplete and complete information about cost conditions.
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1 Introduction

Coordination among groups in the absence of clear communication channels can be

studied through the minimum effort coordination game which models such scenarios. In this

game, players choose to allocate some of their assets to contributing efforts to their group.

However, gains from their efforts depend heavily on contributions from all group members.

That is, players in a group each choose an effort level, incur the full cost of their effort, and

the gains from their effort depend on the minimum of all efforts levels in the group. This

mimics commonplace social scenarios where a dichotomy exists between efforts being both

costly to individuals while also benefiting the whole group.

With the correct characterization of the game, the dependence of individual payoffs on

the minimum effort of the group allows for multiple pure strategy Nash Equilibria at any level

of equal effort. This raises an issue of coordination: which of these equilibria do individuals

arrive at and why do they get there? Despite one of those equilibria being payoff dominant,

players can come to inefficient outcomes. Players could become fixed on any one of the

equilibria that does not yield the highest possible payoffs for all players. In fact, Van Huyck

et al. (1990) find evidence of players coming to inefficient outcomes instead of the payoff

dominant that was predicted by the solution concept of Pareto Optimality. This failure to

coordinate to the payoff dominant equilibrium, and even coordinating to the most inefficient

outcome, is referred to as coordination failure. They may also incur significant welfare losses

while searching for the equilibrium they will coordinate on. Thus, investigating the minimum

effort game is important as a way of gaining insights on how to encourage coordination in

social scenarios ranging from addressing environmental issues to boosting industry and firm

productivity.

Our paper answers the question: how does private information about different cost of

effort impact the effort choices of players in the minimum effort coordination game? Recent

research separately explores the effects of payoff inequality on coordination (Feldhaus et al.,

2020), and the impact of varying information players have about whether others also have
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complete information (Chen et al., 2011; Feri et al., 2022). Our work addresses a gap in this

literature by formalizing what it means to have incomplete information about costs in the

game to study its effect on coordination. We investigate the effect of incomplete information

by extending prior theoretical work to get an equilibrium prediction, and test these findings

with an experiment. In particular, we find that multiple Bayesian Nash Equilibrium exist.

So, we consider maximizing potential and the predicted probabilities associated with effort

choices under stochastic potential. We then make predictions about effort in early (short

run) and later periods (long run) for different combinations of cost pairings and information

about those costs.

We run an experiment on 80 undergraduates at the Veconlab at the University of Virginia

to test the predictions of this theoretical work. In each of part of the experiment, we randomly

assign participants by session to various cost pairings in which players are assigned: high

and high cost, high and low cost, and low and low cost. These sessions were randomly

assigned to have either complete information about the costs of other players (the known

condition), or incomplete information about the costs of others (the unknown condition). In

the unknown condition, players were informed of the distribution from which their partner

was randomly assigned a cost type. Players were matched in anonymous groups and then

asked to repeatedly play the minimum effort coordination game for 10 periods for each part,

for five parts total. Using this data, we make qualitative observations and also perform

permutation tests to comment on the difference between the effort choices, on average, for

these various combinations of cost assignment and known (complete information) or unknown

costs (incomplete information).

From our results, we observe a trend that supports our hypothesis that, when information

about costs is varied, there may be a difference in behavior (effort choice) in early periods

holding certain cost pairings constant. However, it seems that this difference disappears in

later periods as predicted. We find evidence to support our hypothesis that the effect of

information diminishes in later periods, and that costs of effort in the group would be more
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predictive of behavior for which equilibrium individuals converge to. In particular, we find

that, intuitively, individuals with the same cost type in the unknown condition started off

with similar effort choices in early periods regardless of their partner’s match. However, as

they repeatedly faced partners with the same or different cost types, their efforts diverged

in later periods. In general we find support for our overarching narrative that difference in

information about costs can undermine coordination in early periods, but that this effect of

information disappears in later periods.

Studying which contexts and factors induce coordination failure, and how to create envi-

ronments that promote coordination instead, is a major focus of research on the extensively

studied minimum effort coordination game (Cooper and Weber, 2020; Chen and Chen, 2011;

Deck and Nikiforakis, 2012). In the literature, this game has been studied with all players

having complete information. One major strand of the literature develops, and finds empir-

ical evidence for, a model of players’ efforts under this complete information case (Anderson

et al., 2001; Goeree and Holt, 2005). Our results extend on this literature by studying the

impact of incomplete information about opponent’s costs on coordination. By making costs

unique and private for some players, our work goes beyond the literature on information in

the minimum effort game by introducing a difference in game structure, and then explic-

itly indicating to everyone that such a difference exists. It builds upon the literature on

inequality by adding private information about unequal payoffs. By studying the interaction

of these two factors, we consider a meaningful variation of the minimum effort game. This

variation more accurately models coordination in field settings where individuals often have

different costs to contributing efforts, and these individual costs are not common knowledge.

The paper is organized as follows. Section 2 gives motivation for studying the minimum

effort game including an example for a context relating to making environmentally conscious

choices. We also summarize major experimental evidence in the literature to demonstrate the

known factors that impact average effort level which helps establish how our contribution

and question are novel to the best of our knowledge. Section 3 establishes the minimum
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effort game, provides notation, and presents our variation of the minimum effort game to

more concretely define what it means for players to have private information about costs

(unknown costs condition). We go on to provide an in depth discussion of relevant solution

and equilibrium-selection concepts, and we apply these concepts to the case of incomplete

information. In Section 4, we present our research question and hypotheses about the effect

of incomplete information. In Section 5, we describe a pilot, and the design of our final

experiment to test our hypotheses, including methods and the treatments participants faced.

Section 6 presents the results of that experiment along with a discussion of each of those

results as they pertain to our theoretical predictions. Finally, Section 7 concludes.

2 Motivation and Research Context

2.1 Coordination in Production

John Bryant’s original presentation of the Keynesian coordination game was as a model

about individual-level decision making used to address macroeconomic questions surrounding

consumption versus leisure (Bryant, 1983). In particular, leisure was traded off for the

production of perfectly complimentary intermediate goods that was a perfect complement to

the final commodity. This is the basis for what is now commonly referred to as the minimum

effort coordination game (also referred to as the weak-link game).

The minimum effort coordination game has a clear connection to workplace scenarios.

Examples that display the connection are: the development of a product by a team, the

production of goods that are perfect complements, and other scenarios where individuals

contribute to a goal where achievement conceivably depends on the weakest contributor. In

the literature, the minimum effort game is often a model for studying how players respond to

a changing incentive structure to inform firms about how to better encourage coordination

internally among employees and boost productivity across firms. For example, research has

been done on the impact of loss contracts (reframing gain contract incentives as losses (Imas

et al., 2016; Hossain and List, 2012)) on coordination in the minimum effort game (Roby,
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2021) to explore if firms should implement such contracts. Other research shows that small

firms can grow into large firms that are efficiently coordinated, but initiating coordination

in a firm that is already large may be very cumbersome (Weber, 2006). Brandts and Cooper

(2006b) investigates how making the efforts of players observable to others in the group

affects coordination in relation to productivity in the firm.

2.2 Coordination in Other Contexts

However, the insights about coordination in the minimum effort game should not be

constrained to simply informing how to boost firm productivity.

2.2.1 Environmental Goods Application

Consider the challenge of encouraging individuals to undertake environmentally con-

scious choices to help preserve environmental goods. Environmentally conscious choices may

not always align with the most economical or convenient option making them difficult to pro-

mote. These choices often require individuals to bear the costs individually: paying a higher

premium or sacrificing personal preferences in favor of environmentally friendly products, or

spending additional time to engage in behaviors like sorting out recycling from other waste.

Exacerbating this challenge, environmental benefits realized from these actions depend heav-

ily on the choices of others. A similar idea is captured in the minimum effort coordination

game where players pay for every unit of effort they choose to allocate, but have payoffs that

depend on all players’ efforts.

While the relationship between benefits from individual effort and the efforts of others

may not always be so drastic as to be modeled by a minimum function, we present an

example about making environmentally-conscious choices where the payoffs might plausibly

depend on a minimum. The setup is as follows: two cattle farmers are choosing between

efforts to either “pollute” or “not pollute” which impacts the quality of a nearby stream

they both use for raising cattle. The strategic form representation of this game is presented

in Table 1 based on the minimum effort game payoff function given later by eqn. (1).
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Not Pollute Pollute

Not Pollute 2 , 2 -8 , -2
Pollute -2 , -8 -2 , -2

Table 1: A stylized 2x2 strategic form representation of the minimum effort game for 2
players choosing to Pollute (Effort = 0) or Not Pollute (Effort = 1). It is generated with
a = 10 and b = 6 in eqn. (1) with an added negative constant (append a term that subtracts
2 from the payoff) so that payoffs are negative if both pollute. The negative constant only
impacts framing of payoffs.

The binary coding of Pollute (Effort = 0) vs. Not Pollute (Effort = 1) acts as a switch

for the cleanliness of the stream. If they both choose to coordinate on the high effort

equilibrium and not pollute (the high effort of 1), then the minimum of their efforts is 1,

so the stream stays clean and they both benefit from being able to raise healthy cattle. If

either one pollutes, then the minimum drops to 0 and payoffs are lower than the high effort

equilibrium. This can be interpreted as: if any one of the two farmers pollutes, then the

polluted stream will make both their cattle sick which hurts their payoffs. An implication

of this is that: if one farmer pollutes the stream and makes both of their cattle sick, the

other has no incentive to incur the cost of not polluting. Instead, they would rather pollute

as well. Thus, they might settle on the low effort equilibrium of both polluting (Effort =

0). This example shows an application of the minimum effort game to contexts relating to

protecting environmental goods.

2.2.2 Social Norms Application

The use of a minimum function might be appropriate for modeling payoffs in a variety of

social scenarios where implicit coordination is needed to uphold social norms. Some examples

would be: viewing any kind of performance, or maintaining trust in a group (especially if

there is anonymity). We can describe upholding social norms as requiring efforts from

everyone involved; individuals must put effort into conforming to some standard such as:

staying quiet for an orchestral performance. Breaking those norms can impact the whole

group by bringing about a negative deviation from the expected experience: a loud jeer is
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distracting to everyone in the concert hall. Adhering to this depiction, where ”benefits” of

everyone in a group can be undermined by just one deviant who does not follow the social

norm, we could model the payoffs in these scenarios using the minimum function.

Ultimately, we can use the minimum effort game as a simplified model for studying

coordination. That deeper understanding can then be applied to a myriad of contexts where

coordination matters to promote more efficient outcomes.

2.3 Literature Review

A bulk of the research about the minimum effort coordination game has been focused on

what affects coordination and how to avoid coordination failure. Most of the experiments

used to study these issues give players complete information about all aspects of the game

structure including the cost of effort for other players. Players are also aware that their

knowledge of the game structure is shared by all other players in the game. We now sum-

marize this research in order to demonstrate where the literature is and that our research

question is, to the best of our knowledge, novel and addresses a meaningful gap in this

literature.

2.3.1 Effort Incentives

One focus has been understanding how changing the gain and cost of effort impact

average efforts and coordination. Goeree and Holt (2005) consider the impact of changing

the universal cost of effort on the average effort level. They suggest using maximizing

potential as a way to predict if individuals will converge to a high or low effort equilibrium.

They find that low costs lead to coordination on a equilibrium of higher effort while higher

costs lead to lower efforts. Myung and Romero (2013) consider the welfare effects of changing

cost of effort. They find that higher effort costs, by increasing the speed of convergence, may

result in improvements to the combined welfare of players compared to intermediate costs

Brandts and Cooper (2006a) find that increasing the gain from the minimum effort can

lead players to coordinate on higher efforts even in setups where coordination had previously
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failed. Hamman et al. (2007) consider the effect of a one-time, all-or-nothing incentive for

achieving a certain effort level. They find that variations of this incentive structure improve

coordination, but that the effects of this incentive do not last once the additional incentive

is removed.

2.3.2 Personal and Group Identity

Another branch of research investigates personal and group identity in the minimum

effort game. Engelmann and Normann (2010) find that a stronger group identity leads to

higher effort levels for a sample of Danes and suggest that this may have something to do

with culture. Chen and Chen (2011) extend on that work and find that it holds in more

broad scenarios where there is a clearly established group identity. Grossman et al. (2019)

study personal identity in the minimum effort game. They found that despite no gender

differences in effectiveness of leaders, female leaders were perceived less favorably.

2.3.3 Communication and Monitoring

Several studies have explored the effect of providing information or feedback to players

about the choices of other players. Avoyan and Ramos (2021) allow for communication

in the minimum effort game. They find that communication, paired with a commitment

device, can increase effort and efficiency significantly. Deck and Nikiforakis (2012) consider

different forms of monitoring. They find that only revealing the choices of all players (perfect

monitoring) leads to coordination at the payoff-dominant equilibrium whereas information

about a few other choices in the group does not. (Leng et al., 2018) allow for continuous

time and find that effort levels are not significantly different from discrete time. However, a

difference appears in the interaction between continuous time and full information feedback

(similar to perfect monitoring) which improves average effort levels unlike in the interaction

between monitoring and discrete time.
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2.3.4 Private Information and Inequality

Although an understanding of the impact of the gain and cost parameters and other

factors on effort are integral to informing our experimental design, our research question is

most closely related to the literature on information about the game structure and inequality

through payoff asymmetry.

Brandts et al. (2007) conduct an experiment using the minimum effort game with asym-

metric information. However, their research focuses on what role leadership plays in over-

coming coordination failure, not on the effect of that asymmetric information on the effort

outcomes. Participants are aware of the exact efforts costs for the whole group but not the

effort costs of specific individuals. They find that, following an added incentive designed to

promote coordination, effort leaders (those who raise their efforts first in response to this

increase) tend to be players who have the modal cost of effort. Feldhaus et al. (2020) study

the impact of payoff inequality on efforts for a 2 player game. They structure their payoffs

so that there exists an equilibrium with equal payoffs for both players despite them having

different costs of effort. This is the equality dominant equilibrium, and they predict that

this equilibrium will be the one that players coordinate on. Players can identify this equality

dominant equilibrium because they have complete information about the game. Their exper-

imental evidence shows that, even in the case where there is a Pareto-dominant equilibrium,

players tend towards the equilibrium with equal payoffs.

The term “information” has been used by Feri et al. (2022) to refer to information

about the distribution of effort choices in previous rounds. In this case, partial information

refers to players only knowing about the minimum from previous rounds. Full information

is where players know the exact effort distribution from previous rounds, this is comparable

to monitoring as discussed in other research (Deck and Nikiforakis, 2012; Leng et al., 2018).

An alternative understanding of this term: ”information,” which most closely matches

our use of it (which is formalized later in Section 3), is with regards to knowledge about

elements of the game form. Chen et al. (2011) find that the disparity in outcomes of a
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previous experiment and a replication experiment is a result of a difference in what players

were told about what other participants knew about the game structure. In other words,

players were uncertain whether they were in a case of complete information due to a difference

in instructions. Ultimately, they find that much of what they previously found for the

common information case does not hold when there is uncertainty about what other players

know. Our research focuses on private information about the costs of effort which is a case

of incomplete information.

3 Theoretical Framework

In this section, we first present the minimum effort coordination game which we use

to study coordination and formalize the environment that players will make decisions in.

We develop and provide notation for a variation on the original game to make precise what

it means for information to be incomplete (private information about costs, unknown cost

condition). This generates additional uncertainty for agents in the game, as opposed to the

case of complete information (full information about costs, or known cost condition). We

then provide an in-depth discussion of existing equilibrium refinement concepts that predict

which of the pure strategy Nash Equilibria players converge to. With these concepts as

the groundwork, we analyze the game and discuss a theoretical solution to the minimum

effort coordination game with private information about costs. We then use this theoretical

framework to make predictions about behaviors in the minimum effort coordination game

which are presented in Section 4.

3.1 The Minimum Effort Coordination Game

We will use notation that matches that of Van Huyck et al. (1990) who originally formal-

ized Bryant’s original game, giving a strategic form representation for the minimum effort

coordination game.

In this game, players are put in groups of n people. In each group, all players select
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their individual efforts: e1, . . . , en ∈ [e, e] from a discrete set of options bounded by lower

and upper bounds, e and e, respectively. Group members do not communicate. They each

make their effort decisions in private with no way of knowing the effort choices of others in

their group until after all decisions are made.

The payoffs for player i who makes effort choice, ei, are determined using the following

profit function (Van Huyck et al., 1990):

πi(ei, e−i) = amin{ei, e−i} − bei, (1)

where a > b > 0, e−i = min{e1, . . . , ei−1, ei+1, . . . , en}. We use −i to refer to all players that

are not player i. An equivalent representation of eqn. (1) is:

πi(e1, . . . , ei, . . . , en) = amin{e1, . . . , ei, . . . , en} − bei

because the efforts of others only affects player i’s profits through the minimum.

The benefit or gain from an increased minimum effort is a. Thus, any player i who

chose an effort ei could benefit (gain a) from contributing additional efforts, ϵ > 0, only

if their new effort is less than or equal to the minimum of all the other players efforts:

ei + ϵ ≤ min{e1, . . . , ei−1, ei+1, . . . , en}. The cost of each additional unit of effort put forth

by a player is b, regardless of whether or not their efforts are above or below the minimum

of their group’s efforts.

3.1.1 The Case of Incomplete Information

Throughout the rest of the paper, when we refer to complete versus incomplete informa-

tion, we are generally referring to whether players know the costs, b, of effort that all other

players face. Although costs of effort may be different for each player, the gain parameter,

a, will be held consistent for all players, and players will have complete information about

this gain.

To make this more concrete, we incorporate private information about cost of effort in

the game by replacing the general cost of effort term, b, in eqn. (1) with a player specific
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cost term, bi. Then, for any player i, their payoff function is defined as:

πi(ei, e−i) = amin{ei, e−i} − biei (2)

where a > bi > 0. Player i will always know their own cost of effort, bi, exactly.

Players may or may not know the effort cost of other players: b−i. If they know the

exact effort cost of all other players, we will say that players have complete information, or

that the cost types of others are known. If they also have the same costs of effort, bi = b for

all i ∈ (1, n), then this becomes identical to the previously defined payoff function for the

game with complete information and symmetric costs given by eqn. (1). The costs may also

be different for each player: bi ̸= bx for some x ∈ (1, n). In contrast, if they do not know

the exact effort cost of any other player, then we will describe the cost types of others as

unknown, and players have incomplete information about the other players’ type.

In our following analysis of this game with incomplete information we make a simplifying

assumption that there are only two different cost types. We define the set of possible types

for any player i as Θi = {bi, bi}. We allow for the possibility that bi = bi, so we can still

account for the complete information with symmetric costs case of the minimum effort game.

In our experiment, a player can be one of two types which we will denote using blow to be a

person with a low cost type and bhigh to be a person with a high cost type. We will use this

notation to refer to player cost types in our experimental methods and results sections. Let

the set of possible strategies for any player i be S = {e|e ≤ e ≤ e ∩ e− e ≡ 0 (mod h)}, for

some h that is chosen to control the number of discrete steps between the effort bounds: e

and e. For example, if we want only 2 discrete options for the strategy set: S = {e, e}, then

we set h = e − e. We define the joint probability distribution over types as θ = {0.5, 0.5},

so the probability any given player i is type bi is 0.5, and the probability they are type bi

is also 0.5. Finally, we let the payoff functions µi for any player i be the same as the one

defined in eqn. (2).
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High (20) Low (10)

High (20) 4 , 4 -6 , 2
Low (10) 2 , -6 2 , 2

Table 2: A 2x2 strategic form representation of the minimum effort game for 2 players
choosing high (20) or low effort (10), with a = 1, and b = 0.8. Player 1 is the row player,
and player 2 is the column player.

3.1.2 Example

As an example, consider a minimum effort game with 2 players who choose efforts from

the the set of {10, 20}. Let a = 1 and b = 0.8 in eqn. (1). We get the following payoff

function for player i:

πi(ei, e−i) = min{ei, e−i} − 0.8ei,

where i ∈ {1, 2}. The corresponding strategic form representation is given in Table 2.

Suppose player 1 and player 2 choose efforts e1 = 20 and e2 = 10. Player 1 pays for 10

excess units of effort above the minimum. These excess efforts are made without any returns,

and player 1 will make a marginal losses on each of these excess units of effort. Thus, player

1’s payoff is -6. On the other hand, player 2 earns 2; they make a marginal profit on every

unit of effort they contributed because they were at the minimum effort.

With no opportunity for communication between players, player 2 only observes their

payoff of 2 suggesting that the minimum was 10, the same as the effort they contributed.

This signal is noisy to player 2. It may be that their effort was lower than player 1, in which

case they would want to increase their own effort. It may also be that they contributed

the same effort as player 1, in which case they would not want to increase their own effort.

Therefore, player 1’s high effort does not communicate a meaningful signal to coordinate

on a high effort level because it is confounded by the possibility that they may have just

contributed a low effort as well. The minimum effort player is guaranteed a non-negative

payoff. Further, choosing the lowest possible effort level, e (an effort of 10 in this example),

gives a player certainty about their payoffs.
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This example highlights how the payoff function puts an emphasis on the issue of coordi-

nation. Because gains come from the minimum level of effort, players are heavily dependent

upon the contributions of others to perform well in this game. Although they both would

hope to raise the minimum effort as high as possible, more costly efforts make it more dif-

ficult to successfully coordinate on high efforts. Effort leaders (player 1 in this case) may

contribute high efforts in hopes of raising the minimum. However, if other players exert a

lower effort, these effort leaders may observe lower payoffs instead since they incur marginal

losses for each unit of excess effort above e−i. On the other hand, players who contribute

lower efforts eliminate the possibility of better payoff states, but are insuring themselves

against risk. We use mathematical rigor to discuss these informal considerations about the

game in the following sections.

3.2 Equilibrium: the Case of Complete Information

For this section, we study equilibrium in the case of players having complete information

about the costs of others.

3.2.1 Multiple Pure Strategy Nash Equilibrium Solutions

The rational agent chooses an effort that maximizes their profit from eqn. (1). Given

the minimum effort of other players, e∗−i, we graphically solve the optimization problem:

max
ei

{πi(ei, e
∗
−i)}, as shown in Figure 1a. Figure 1a shows that in the region where ei > e∗−i,

increased efforts result in increased costs and bring no benefit, so the profit function decreases

linearly at a rate of b. In the region where ei < e∗−i, lower efforts than the best response

decrease profit at a rate of a − b > 0. Thus, it is clear that ei = e∗−i maximizes profit. The

reaction function in Figure 1b shows that the best response function for player i is ei = e∗−i

for any e∗−i. In other words, the best response for player i is to match the minimum effort of

all other players if their efforts are known, and this minimum is not necessarily the minimum

of the set of possible effort choices: e∗−i ̸= e.

Any level of equal effort by all players is a Nash equilibrium because deviations from

14



(a) Profit of player i, πi(ei, e
∗
−i), as a function

of their efforts given the minimum effort of
other players.

(b) Player i’s reaction function showing their
best response to any minimum level of effort
from the other players.

Figure 1: Best Response Given Expected Minimum Effort (with Complete Information)

equal effort will only lead to worse payoffs for any player i. Given multiple effort levels to

choose from, players must decide which one they will coordinate on. In this context, Bryant

notes that there is “nothing particularly rational about rational expectations equilibria”

(Bryant, 1983). Adopting a solution concept of looking for a Nash equilibrium yields little

clarity about how effort choices in this game. How can we makes sense of why any one

equilibrium would be more attractive than the others?

3.2.2 Payoff vs. Risk Dominant

The possible equilibria are Pareto ranked. By increasing the effort level of all players

by one, we can move from one equilibrium to the next while making everyone better off,

without making anyone worse off. Maximum effort from all players is the Pareto dominant

equilibrium. At this point, there is no way to make anyone better off without making

someone worse off.

In their solution concept for 2x2 games, Harsanyi and Selten refer to this Nash equilib-

rium of highest effort as payoff dominant because it yields the highest payoff for all players

(Harsanyi and Selten, 1988). They also introduce risk dominance. The risk dominant equilib-

rium can be identified by comparing the product of players’ losses if they deviate (deviation
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loss) from a given equilibrium. The equilibrium that has the highest product is the risk

dominant equilibrium. These solution concepts are applicable if possible effort are reduced

to one high and one low level and the group has only 2 people in it.

As an example of how to apply these solution concepts, refer to Table 2. (H, H) payoff

dominates (L, L) because the payoff is greater for all players. However, (L, L) strictly risk

dominates (H, H) because the product of deviation losses for (L, L) is (2+6)∗ (2+6) = 64 is

strictly greater than the product of deviation losses for (H, H) which is (4− 2) ∗ (4− 2) = 4.

This can be understood as players having more to lose if they deviate from that equilibrium.

If risk dominance conflicts with payoff dominance, Harsanyi and Selten argue that one

should favor payoff dominance as it seems irrational to choose, from multiple acceptable

equilibrium solutions, one with strictly inferior payoffs. Harsanyi later qualifies this assertion,

instead preferring a solution concept based purely on risk dominance in certain contexts, in

particular: non-cooperative games (Harsanyi, 1995).

3.2.3 Potential, and Stochastic Potential

Goeree and Holt point out that a limitation of Harsanyi and Selten’s concept of risk

dominance is the absence of a way to generalize this concept to more complex contexts.

So, they suggest maximization of a potential function (Monderer and Shapley, 1996) as

an alternative way to predict the effort equilibrium that players gravitate towards through

repeated play of the minimum effort game (Goeree and Holt, 2005). The potential function

is a function of all players’ choices. Maximizing the potential function with respect to a

player’s choice also maximizes the player’s profit function for that player (i.e. the derivatives

of the potential function and individual player profit function with respect to player effort

are equivalent). In this way, the potential function captures all information relevant to all

individuals’ decisions. The potential function for the n-person minimum effort coordination

game is:

V (e1, . . . , en) = amin{e1, . . . , en} − b
n∑

i=1

ei (3)
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We can informally check that eqn. (3) is the potential function by observing that the

partial derivative of the potential function and of the payoff function for any player i with

respect to their effort level ei are equivalent.

∂V (e1, . . . , en)

∂ei
= a

∂min{e1, . . . , en}
∂ei

− b =
∂πi(e1, . . . , en)

∂ei

Where the value of ∂min{e1,...,en}
∂ei

depends on how ei compares to other effort levels.1 ∂πi(e1,...,en)
∂ei

can be interpreted as the change in the payoffs when player i’s efforts change by one. Since

achieving a Nash equilibrium requires equal efforts eE, we can apply this constraint that

eE = e1 = . . . = en to V as defined in eqn. (3). This allows us to characterize a potential

function as follows:

V = aeE − nbeE (4)

Under this constraint, potential is maximized at the lowest effort when nb > a, and is

maximized at the highest effort when nb < a.2

A limitation of this concept is that it only yields predictions of high or low effort. The

implication that individuals will converge to extreme levels of effort (a risk or payoff dominant

equilibrium) is too strict to accurately model behavior in the lab. To account for randomness,

Anderson et al. define a stochastic potential function (Anderson et al., 2001). They start

with the assertion that the probability of player i selecting any given effort level is a function

of the expected payoff: πe
i , associated with their effort, e. Mathematically, they define this

as follows:

fi(e) =
exp(πe

i (e)/µ)∫ e

e
exp(πe

i (s)/µ ds
(5)

The construction of the probability density function (PDF), fi(e), guarantees that it is

proper, and the probability of effort is increasing in expected payoffs for a chosen effort level.

1One may use the following piece-wise function to calculate the derivative of the minimum function,

although it is undefined at ei = e−i:
∂ min{ei,e−i}

∂ei
=

{
1 ei < e−i

0 ei > e−i
2To see this, rearrange V to get an equivalent equation (a−nb)eE . The case nb > a implies that a−nb < 0,

so V is decreasing linearly in eE . Thus, the lower bound of possible efforts, e, will maximize V . A similar
argument applies for the case of nc < a.
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(a) PDF for low cost type: blow = 0.15, proba-
bilities are concentrated at the highest effort.

(b) PDF for high cost type: bhigh = 0.65 which
is closer in magnitude to a

n = 1
2 , so probabilities

are not as extreme at lower efforts.

Figure 2: PDFs of Effort Choices in Round 10 Starting from Uniform Initial Beliefs

The PDF includes a noise parameter, µ, which can best be interpreted as a way to account

for all the immeasurable things outside of this model that may still have some impact on

choice. The probability for a given effort decreases in µ which matches the intuition that a

larger noise parameter attenuates the impact that a high expected payoff has on selecting a

given effort level (“sensitivity of the density to payoffs”).

The PDF calculations can be iterated starting with an expectation about the effort

distribution to get a PDF of effort choices in future periods. In Figure 2, we use eqn. (5)

and a µ = 7.4 as estimated by Goeree and Holt (2005) to generate PDFs of effort choices

in period 10 for 2 players starting from an expectation of a uniform PDF of efforts for the

costs of effort we will use in our experiment: blow, and bhigh. This helps illustrate that the

predictions which result from this method are not extremes of either the highest or lowest

possible efforts: e, e.

The potential function described in eqn. (3) can be used to give us an idea of the general
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direction that efforts should move towards depending on whether it predicts the highest or

lowest effort. The PDF given by eqn. (5), and the associated concept of stochastic potential

help us make more accurate predictions of behavior by including a parameter which accounts

for the noise that would likely arise in the lab setting.

3.3 Equilibrium: the Case of Incomplete Information

Our research differs from other work because our variation of the game from section

3.1.1 incorporates cost asymmetries and incomplete information through private information

about effort costs to more closely model social scenarios involving coordination. We explore

this variation by focusing on a simple case with two players. There is private information,

so players do not know about the exact cost type of their match. However, we let the

distribution of the costs be known to all players. For simplicity, we assumed that for any

player i, we define a binomial random variable: cost type which we denote as b̃i. We defined

the two possible types as: {bi, bi} where bi ≤ bi and the probability that one is assigned bi

is: P (bi = bi) = α.

We apply the robust theoretical work from the complete information case to this simple

setup with incomplete information to first: confirm that this is still a coordination game.

And second, to support our predictions about chosen efforts in the game.

3.3.1 Maximizing Profit, Multiple Pure Strategy Bayesian Nash Equilibrium

We analyze this problem for player 1. Parallel results will hold for player 2 who instead

considers the uncertain type of player 1. Player 1 is aware of their own assigned private cost

type b1, and the distribution from which b2 is drawn: b̃2. We described this distribution

to be binomial. Player 1 also has common knowledge about the payoff structure such as:

the payoff function and the value of a. For this analysis, we study the case where bi ̸= bi,

because if they are equal, there is no uncertainty about type.

Let efforts from player 2 be a function of the cost parameter player 2 could face: e∗2(b̃2).

Given the resulting efforts from player 2 of either: e∗2(b2) or e∗2(b2), player 1 has expected

19



profit:

E(π1) = α[amin{e1, e∗2(b2)} − b1e1] + (1− α)[amin{e1, e∗2(b2)} − b1e1]

which is the average of their profit across the possible realizations of the random variable b̃2.

Thus, player 1 is faced with solving the following profit-maximization problem:

max
e1

{α[amin{e1, e∗2(b2)} − b1e1] + (1− α)[amin{e1, e∗2(b2)} − b1e1]}

= max
e1

{a[αmin{e1, e∗2(b2)}+ (1− α)min{e1, e∗2(b2)}]− b1e1]}

which is composed of two terms: 1) a gain from the expected minimum effort and 2) the loss

from individual effort. Notice that 1) depends on where player 1’s effort, e1, falls relative to

player 2’s effort.

Let us assume that e∗2(b2) ≤ e∗2(b2), because lower costs make excess efforts beyond the

ex-post minimum comparably less expensive. Complementary to that, withholding effort is

comparably more expensive for players with lower costs of effort than when they have higher

effort costs. Further, increases in expected value should be larger, and change in variation

of outcomes should be smaller for the lower cost person than the higher cost person all else

constant. Thus, we expect low cost people to choose higher efforts. This assumption is also

supported by prior research on the impact of costs on effort discussed in Section 2 and by the

PDF of effort choices given in Figures 2b and 2a. The assumption that the two are unique

is essential to creating a setting of incomplete information. The assumption on order is only

necessary because it gives us an ordering of efforts. If the order was reversed, it would be

simple to adjust how the order in which the efforts are defined in the cases that follow:

• Case 1): e1 < e∗2(b2)

– An increase in e1 by 1 raises the expected minimum effort by 1.

– Thus, ∂E(π1)
∂e1

= a− b1 which must be positive.

• Case 2): e∗2(b2) < e1 < e∗2(b2)
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(a) Let a(1− α) < b1, so the profit function
is decreasing for e1 ∈ (e∗2(b2), e

∗
2(b2)).

(b) Let a(1− α) > b1, so the profit function
is increasing for e1 ∈ (e∗2(b2), e

∗
2(b2)).

Figure 3: Best Response Given Expected Efforts of a Match with 2 Possible Costs of Effort

– An increase in e1 by 1 raises the expected minimum effort by 1− α.

– Thus, ∂E(π1)
∂e1

= a(1− α)− b1 which is positive if a(1− α) > b1, else negative.

• Case 3): e∗2(b2) < e1

– An increase in e1 by 1 raises the expected minimum effort by 0.

– Thus, ∂E(π1)
∂e1

= −b1 which must be negative.

Using this case-by-case analysis, we graphically represent the expected profit for player

1 in a setup in which a(1− α) < b1 in Figure 3a, and a(1− α) > b1 in Figure 3b. Different

from the full information case, player 1’s best response to an unknown player 2 depends on

what player 1’s cost is. Intuitively, player 1’s best response will be to match one of player

2’s given effort levels. Which of those effort levels depends on whether P (b2 = b2) = 1−α is

large enough for player 1 to expect player 2 to use the corresponding high effort, e∗2(b2), often

enough that they should choose to match that higher effort. How often is “often enough” is

dependent upon how costly it is to put forth that higher effort; it is not as straightforward

as trying to match player 2’s most likely effort choice. With repeated play, the best response

function should be updated as player’s gain information which they can use to update their
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beliefs about their opponents true cost type. The previously mentioned analysis would be

iterated replacing α with an updated probability of whether b2 = b2.

A randomly assigned cost parameter makes matching efforts a more noisy process, since

their best response functions may be different. However, player 1 and player 2 should still

seek to coordinate on the same level of effort. Any level of equal effort is a pure strategy

Bayesian Nash equilibrium because in any given combination of costs (let nature choose the

type first and reveal that type), at equal levels of effort, neither has an incentive to deviate

because doing so either costs them b, or a− b.

3.3.2 Applying Potential & Stochastic Potential

In the absence of a unique pure strategy Bayesian Nash equilibrium, we generate a

potential function3 for this case:

V (e1, . . . , en) = amin{e1, . . . , en} −
n∑

i=1

biei (6)

Assuming that agents are rational and, consequently, will achieve an equilibrium where

efforts are equal at eE = e1 = e2 . . . = en, one can simplify the potential function:

V (e1, . . . , en) = aeE − eE

n∑
i=1

bi

= aeE − nbeE (7)

where b is the arithmetic average of the private effort costs. This gives a very similar result

to the complete information case, except the average of private costs of effort: b, takes the

place of the universal cost parameter. With private information about costs, potential is

maximized at the lowest effort when nb > a, and is maximized at the highest effort when

nb < a. As previously mentioned, this solution is used a guide as to whether efforts will go

3Like before, we can informally check that eqn. (6) is the potential function by checking the derivatives.
Although bi is unique to each player, the different private costs and effort decisions of others are still constant
with respect to ei, so it follows that:

∂V (e1, . . . , en)

∂ei
= a

∂min{e1, . . . , en}
∂ei

− bi =
∂πi(e1, . . . , en)

∂ei
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towards the higher effort equilibrium or lower effort equilibrium with repeated play. This

prediction only changes with changing costs and has no dependence on whether there is

complete or incomplete information about costs.

Maximizing stochastic potential can give more exact predictions of effort after being cal-

ibrated. We consider the probability of effort choice calculations which come from stochastic

potential to get an analysis that accounts for the lack of information. There are two ways

we might consider the impact of information in this analysis. First, incomplete information

might be confounded with other variables not included in this model. Information might af-

fect the decision through other facts that are lumped into the noise parameter, µ, in eqn. (5).

This will have the effect of making probabilities closer to random guessing (a uniform PDF)

and will also change the speed at which probabilities change from period to period. The

second impact of incomplete information is on the initial beliefs players hold about how they

should contribute efforts. We depict the effect of information in this way because if a player

knows that their partner has a low cost of effort, they may be more optimistic about what

effort level that player will contribute compared to a partner with high cost of effort, where

they might be more pessimistic which can be reflected in this framework as a higher initial

probability of choosing the low effort.

Even if we adjust the initial PDF of efforts from a uniform distribution to a more pes-

simistic set of beliefs and perform iterative calculations of probabilities for stochastic po-

tential, we see that probabilities still move to be centered around a similar point (or effort

choice) given enough periods. As the most extreme example, we consider a player with cost

type 0.15 who does not know that they are matched with another player with cost type 0.15.

We give the player an initial belief that they should play the lowest effort, 40 with proba-

bility 1. We iteratively calculate the PDFs for each period and give the PDFs for selected

periods in figure 4. As shown in the graph, the PDF shifts from being a 100% probability

of selecting the lowest effort to a PDF centered at a higher effort by period 10 with the

most probable effort choice being the highest effort of 60. So, the potential function still
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Figure 4: The PDFs were calculated iteratively starting from initial beliefs represented by a
PDF that had a 100% probability of selecting an effort of 40. PDFs for periods 1, 5, and 10
are represented to illustrated how probabilities change drastically from period 1 to 10.

gives us a general direction of where players should go after converging to an equilibrium.

A difference in information can make the process of getting there more noisy and complex

as shown by the dramatic changes to the PDF in early periods (compared to the case of

complete information), but has little effect after sufficient repeated play where players can

learn about their opponent’s cost types through the observed minimum efforts.

4 Research Question

4.1 Question: Coordination with Incomplete Information

Although there has been significant research on the minimum effort coordination game

with participants having complete information about all elements of the game structure,

research on the case of incomplete information appears to be sparse. Further, while there is

some prior work on payoff inequality, this work was also done under complete information.

Our research question addresses the gap in the literature about the effect of the interaction

between incomplete information and cost asymmetry. Does introducing private information
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about asymmetric costs negatively impact the average effort level compared to the full infor-

mation case? How are these average effort levels affected in the short run — how are people’s

efforts initially impacted by changes in the information they are provided with? And, over

time, how are these average effort levels affected — does the difference in information con-

tinue to have an impact on average efforts in later periods?

In the contexts that motivate the study of the minimum effort game, individuals generally

have different costs to contribute. For example, when contributing to a group project, some

group members may be more knowledgeable or experienced which can make contributing

effort more or less time consuming, and their time more or less valuable thus incurring

different opportunity costs. The variation in costs of effort among group members may make

some individuals more or less likely to exert higher efforts. Consequently, having unknown

costs adds more noise and should make coordination more challenging than in the case of

complete information. In this case, studying the effect of incomplete information and cost

asymmetry may offer some unique insights on how to promote coordination where it would

otherwise fail resulting in sub-optimal outcomes. We study this using a minimum effort

game that incorporates private cost information. As previously discussed, this variation

still has multiple pure strategy Bayesian Nash Equilibria. Thus, this game can be used to

model scenarios that require coordination and investigate the impact of costs of effort and

incomplete information.

If private information about costs does impact average effort levels, further study of

the minimum effort coordination game would be important to test whether findings in the

complete information case can be replicated in the case of incomplete information. Therefore,

this research question is significant to advancing our existing knowledge about coordination

in this game and related contexts.
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4.2 Theoretical Predictions

Using the theoretical framework from Section 3, we make predictions about behavior in

the minimum effort game. The critical assumptions we make are: 1) agents of different cost

types are assumed to play differently and choose different efforts on average all else constant,

and 2) with repeated play, people in a group will converge to a pure strategy Bayesian Nash

Equilibrium of contributing equal efforts.

Hypothesis 1. (Initial Choice) Holding cost type constant, the initial effort choices

will be lower for the unknown costs condition than for the known cost condition.

Hypothesis 1 is concerned with effort choices in the short run. The incomplete informa-

tion case introduces cost types that are assigned randomly, so players are uncertain about the

exact cost type of their match. If these cost types have some impact on chosen effort, then

the introduction of randomness about cost types adds a more salient element of uncertainty

that players must face in the game. An agent must consider the possibility of variation in

type of opponent: which distribution of efforts they face, in addition to the strategic uncer-

tainty that is present in the complete information: what realization of effort they observe

from any given distribution. In this case, it seems that risk averse attitudes will be more

pronounced as variability of efforts they might observe increases and outcomes become more

uncertain. Individuals facing the uncertainty of unknown cost types may be more likely to

trade off higher expected value for decreased variance in the possible outcomes. They would

do so by decreasing efforts compared to the effort which would be the best response function,

given in Figure 3, for an agent who is maximizing expected payoffs alone which we discussed

in section 3.3.1.

Hypothesis 2a. (Convergence & Information) Holding cost type constant, average

effort choices under incomplete information will converge to average effort choices under

complete information.

Hypothesis 2b. (Convergence & Costs) For cases of incomplete information, groups

with lower average effort costs will converge to high average efforts.
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Hypothesis 2 is broadly concerned with the long run. In section 3.3.2, we showed that

applying the potential function to this context suggests that having the average of the costs

of a pairing is enough to predict which equilibrium players in that group would select.

Interestingly, this result does not consider any impact of information about costs in the long

run. We considered stochastic potential as a way to investigate the impact of information.

The resulting PDF of efforts from applying the equilibrium refinement concept predicts

that players will converge to the same place in later periods even if they have extremely

pessimistic initial beliefs about the efforts they should play. Thus we come to Hypothesis 2a

which predicts that, in the long run, information will have no effect, and could be explained

as people updating their beliefs about their environment through repeated play. For example,

if a low cost player tries to put forth a high effort, but is met with a very low minimum,

they may think it’s more likely they are playing a high cost player. If players are able to

accurately infer something about their opponent’s cost type from the minimum efforts they

observe, they may be able to converge to the same effort level as if they had known about

their partner’s cost from the start. Hypothesis 2b goes one step further by asserting that the

cost pairings can be ordered by the effort levels they will converge to from least to greatest

as follows: 1) bhigh and bhigh, 2) bhigh and blow having the same efforts as blow and bhigh, 3)

blow and blow. This can be interpreted as updated beliefs from repeated play should correctly

reflect the environment despite having incomplete information in the first period.

In summary, we predict that in the early rounds of repeated play of the minimum ef-

fort game, differences in information about costs will have a dominating effect and lead to

differences in contributed efforts between the unknown and known conditions holding costs

constant. But, through repeated play and as individuals converge to an equilibrium, we

predict that the effect of their costs of effort will dominate as they update their beliefs about

the cost of their opponent.
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5 Materials and Methods

To test our hypotheses, we design an experiment where individuals are asked to play the

minimum effort game for multiple periods where the payoffs are determined by the previously

described minimum effort game payoff functions. Participants were randomly assigned to

varying combinations of cost of effort and information (complete or incomplete) about those

cost types. The experiment was programmed and conducted with the experiment software

z-Tree (Fischbacher, 2007). In the following section, we describe the design of our pilot

to convey, in a more simple way, what participants faced and lessons from our first pilot

that helped guide the design of the final experiment. We then detail the final experiment

which builds off the pilot design including the methods that we used and treatments that

participants saw.

5.1 Pilot: Initial Design of the Experiment

Initially, we ran one session as a pilot through the Veconlab. For this pilot, 6 participants

were recruited from the University of Virginia to participate in an in-person lab study. Sub-

jects were asked to participate in a 2-person minimum effort game that had either complete

or incomplete information.

Upon entering the lab, subjects were seated at private computer stations with a printout

of the consent form, instructions, and their $10 show up fee. Subjects read the instructions,

which we also delivered verbally, on how to perform the task. In this pilot, subjects are

matched randomly in groups of 2 for the entirety of each part. There are 4 parts each

consisting of 10 periods. In each period, subjects play the minimum effort game, making an

effort decision and seeing their payoff for that period based on their effort and the effort of

their match. Their incentive in playing the game was that the tokens they earned would be

converted at a rate of 10 tokens to $1 USD. These performance payments were between $10

and $20. Participants recieved an extra $5 for sharing reactions to the software and game.

Thus, total earnings were between $25 to $35.
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High (6) Low (4)

High (6) 2.10 , 2.10 0.10 , 1.40
Low (4) 1.40 , 0.10 1.40 , 1.40

Table 3: Both players have high effort cost
(0.65).

High (6) Low (4)

High (6) 2.10 , 5.10 0.10 , 3.40
Low (4) 1.40 , 3.10 1.40 , 3.40

Table 4: Row player has high effort cost
(0.65), Column has low effort cost (0.15).

High (6) Low (4)

High (6) 5.10 , 2.10 3.10 , 1.40
Low (4) 3.40 , 0.10 3.40 , 1.40

Table 5: Row player has low effort cost
(0.15), Column has high effort cost (0.65).

High (6) Low (4)

High (6) 5.10 , 5.10 3.10 , 3.40
Low (4) 3.40 , 3.10 3.40 , 3.40

Table 6: Both players have low effort cost
(0.15).

Subjects knew their payoff would be determined by a payoff function similar to the one

given previously by eqn. (2). They were also provided with tables of the strategic form

representation of the game to promote a better understanding of the payoffs that would

result from any given set of effort choices of the group. These tables conveyed their payoffs

in a similar manner as the ones in Tables 3 - 6. Players were allowed to make effort choices of

either 4 or 6. We selected this set of possible efforts to try to isolate the impact of incomplete

information on coordination and reduce confounds. Our considerations were first, to simplify

the setup. Second, to try to avoid highly focal numbers for effort choices (like 5 or 10). Third,

to ensure that payoffs would be positive in order to mitigate the impact of other behavioral

biases such as loss aversion. Finally, to provide no equality dominant equilibrium (where

player payoffs are equal for a combination of efforts) across all possible cases of cost type

pairings.

Across all parts, subjects stood to gain 1 token from each additional unit of minimum

effort. In each part, subjects were assigned to a treatment. The treatments differed in two

things: costs of effort and information about costs. In 3 treatments: B, C, and D, players had

full information about their own cost and the cost of their match. Treatment B corresponds

to the strategic form representation given by Table 3; all players had a higher cost of effort,

bhigh = 0.65. Treatment D corresponds to Table 6; all players had a lower cost of effort,

blow = 0.15. Because players had full information about their match’s cost, they knew with
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certainty that their match had the same cost as them.4 Treatment C corresponds to both

Table 4 and 5; players had either the higher cost bhigh = .65 or the lower cost blow = 0.15,

and knew that their match would have the cost type which they did not have. For example,

if one player was assigned bhigh, they were informed that their match would have blow.

In treatment A, players had incomplete information about their opponent’s type. Cost

type assignment was random for treatment A; players could be one of the 2 previously

described costs of effort: bhigh = .65 and blow = .15, with equal probabilities (50-50). Thus,

the group cost pairings, by random assignment, could mirror any of the cost combinations

from treatments B, C, and D. Tables 3-6 are all relevant strategic form representations for

this treatment. Participants, based on their cost type, were only given the tables relevant to

them: Tables 3 or 4 vs. Tables 5 or 6, but had no more information than that about cost

type in period 1. The only information they could gain in later periods was through the

observed minimum of their group’s efforts.

5.1.1 Lessons from the Pilot

Using this setup, we observed very little variation in effort choices. Out of 6 people, only

one chose to contribute the lower effort of 4 in the first period of the first part (which had

the high cost treatment previously described for treatment B) after which they immediately

switched to an effort of 6. Despite having the high costs, participants quickly (by period 3)

found their way to the high effort equilibrium which was Pareto-Dominant contrary to what

would be expected by an explanation of maximizing potential or selecting a risk-dominant

equilibrium. After that, through parts 2 and 3, they all chose the high effort of 6 in every

period. The only other deviation from an effort of 6 was in part 4 on the last period.

It’s likely that the setup was overly simplified, and participants were thus able to ”figure

out” the game and coordinate on the Pareto-Dominant Equilibrium of contributing high

efforts. In order to address this issue, we decided to add more effort choices and also include

4The costs of effort which are referred to in this paper as: bhigh and blow, are generally denoted as: C,
in the materials given to participants. A copy of some of the materials used for the full experiment can be
found in the Appendix.
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treatments where the game would be played in groups larger than 2. We describe the adjusted

procedures in the remainder of this section.

5.2 Participants

The full experiment was conducted at the Veconlab at the University of Virginia. Due to

no-shows and the need for even numbers to form groups of 2 for the game, only 80 out of the

84 recruited individuals were able to participate in one of the 6 sessions of 12-14 people. Each

session was 1 hour long. Of the people who were recruited and answered the demographic

questionnaire, 61 reported that they had participated in a social science experiment before.

45 identified as female, and 31 identified as male. Those who did the pilot were not eligible

to participate in these sessions.

5.3 Methods

Similar to the pilot, upon entering the lab, subjects were seated at private computer

stations with a printout of the consent form, instructions, and their $10 show up fee. Subjects

read the instructions, which we also delivered verbally, on how to perform the task. A sample

of these instructions can be found in Appendix A. Unlike the pilot, subjects are matched

randomly in groups of 2 for the entirety of each part for the first 2 parts. Then, subjects

are matched randomly in groups of 1
2
the size of the session for the next 2 parts. Our design

included that participants would be in a group the size of the session for the fifth part. Due

to time constraints, no session made it to this final part, so we omit further details for this

final part. Additionally, some of the first 4 parts were not completed by all groups. For any

part that was not completed, participants received the highest possible compensation for

that part. Participants did not know about this until after all decisions were completed in

the session. Generally, participants had enough time to complete between 20 and 40 periods.

Each part consisted of 10 periods. In each period, subjects play the minimum effort

game, making an effort decision from the set of possible efforts: 40, 45, 50, 55 or 60. We

chose these possible effort choices to: 1) ensure that payoffs would be positive, 2) provide
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no equality dominant equilibrium, and 3) give more possible variation in effort decisions.

Following each decision, players could view their payoff for that period based on their effort

and the effort of their match. Players received compensation based on their performance at a

rate of $1 for every 125 tokens they earned. These performance earnings were approximately

between $10 and $20. The total earnings, including both the show up fee and compensation

based on performance, were approximately between $20 and $30.

For each part, subjects were randomized to a treatment at the session level. In each

period, participant payoffs were determined by the payoff function given in eqn. (2). The

value of parameters in this equation varied depending on the treatment players were assigned

to. To increase transparency and understanding of the payoff structure, players were provided

a printed packet of tables of the various strategic form representations of the game. Appendix

B includes a sample of these tables that accompanied the instructions.

Subjects completed the game using the z-Leaf software which executed a program we

coded in z-Tree. Players were instructed on how to input their decisions in the experiment

software. In each period, subjects made their effort choice by typing their selection into an

input box. The program also reminded them of their cost type, whether they had complete

or incomplete information about their match, and gave them feedback about their payoff,

along with a history of their past choices and payoffs. The program handled the random

matching of participants into groups and random assignment to cost types if needed. A

sample of the screens from the experiment software which participants used is provided in

Appendix C.

5.4 Treatments

Across all parts, subjects stood to gain 1 token from each additional unit of minimum

effort. Each of the parts had a different treatment relating to the cost matching or infor-

mation about the cost types of others. The treatments for this experiment are similar to

the treatments described for the pilot. Treatments differed in the cost matching and the
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Cost Matching Info Condition
Player Cost Match’s Cost Known Unknown

High High B A
High Low C A
Low High C A
Low Low D A

Table 7: All possible combinations of information and cost pairings, treatments in bold.

information about cost types of others.

Refer to table Table 7 to see the possible combinations of these 2 dimensions on which

treatments differed, and the treatments associated with those combinations. Similar to the

pilot, in 3 treatments: B, C, and D, players had complete information about the cost type

of their match; this is the known information condition.For treatment B, all players had a

higher cost of effort, bhigh = 0.65; this is the high-high cost pairing. For treatment D, players

had a lower cost of effort, blow = 0.15; this is the low-low cost pairing. For treatment C, one

player in a pair had the higher cost bhigh = .65, and the other in the pair had the lower cost

blow = 0.15; this is the high-low or low-high cost pairing depending on the cost type of the

player who put forth the effort we are concerned with. For example, if we are looking at the

sample of efforts for player who had the high cost type in treatment C, we will refer to them

as being in the high-low cost pairing. We may also refer to C more generally as the mixed cost

pairing. In treatment A, players had incomplete information about their opponent’s type;

this is the unknown information condition. Players were individually, randomly assigned

to be one of the 2 previously described costs of effort: bhigh = .65 and blow = .15, with

equal probabilities (50-50). Thus, players could have been in any of the aforementioned cost

pairings with the following probabilities: 25% chance to be in high-high, 25% chance to be

in low-low, and 50% chance to be in a mixed cost pairing.

This experiment included a third dimension for variation in the game environment:

changes in group size, n. Groups of 2 could see either treatments A, B, C or D. When

group sizes were larger than 2, groups be assigned to either treatments A, B, or D. Players
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Part Number: 1 2 3 4
Group Size(n): 2 players 1/2 of the session size
Session Treatment

1 A D B -A-
2 B A D A
3 A C A D
4 C A -B - -A-
5 A B A B
6 D A B A

Table 8: Treatment assignment in each session (treatments with no data are italicized).

were randomized to treatments in each part by session. Table 8 shows how treatments were

assigned to each sessions and how groups sizes changed over the session. All sessions started

with group size of 2 for the first two parts, and one of those parts was always assigned

treatment A. 3 of the 6 sessions saw treatment A first followed by treatment B, C, or D.

The other 3 sessions saw either B, C, or D first, followed by A. The next two parts were

completed in larger groups where treatment A was seen either first or second, and treatment

B or D was seen in the other part. However, due to strong treatment ordering effects beyond

the scope of our discussion, we focus largely on the first part from every session which always

had participants in groups of 2.

6 Results and Discussion

We present the resulting data from the 10 periods of the first part of each session for

this analysis. There were strong treatment ordering effects in our data which is consistent

with findings in prior work (for example: Goeree and Holt (2005)). It’s possible the discrete

set of options further heightened the ordering effects since subtle variations that could have

been observed in continuous effort choice settings cannot be detected with only 5 discrete

choices. However, these effects are beyond the scope of our current work and discussion in

this paper.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5

6.1 Result 1: Initial Choice

Figure 5 displays histograms of effort choices in period 1 for each possible combination of

cost types for groups of 2: high-high, high-low, low-high, and low-low. Each bin represents

one of the possible effort choices which spanned the range from 40 to 60 by increments of

5. Orange bars indicate that the players were in the unknown condition with incomplete

information. Blue bars indicate that the players were in the known condition with complete

information.

Nonparametric tests may be preferred given the relatively small number of people in

each treatment and to avoid assuming anything about the distribution of observations. The

Wilcoxon Rank Sum Test (or equivalently the Mann-Whitney U Test) is a natural start for

comparing whether two independent samples could have come from the same distribution.

Because the data is discrete, ties in observed effort choice are common between conditions.

This creates issues for the Wilcoxon Rank Sum test. As an informal workaround, one could

35



add small numbers from a random distribution to break ties. However, we opt for a more

robust technique and conduct a permutation test using computational methods; in partic-

ular, we use Monte Carlo sampling to generate a reference distribution. In this test, we

calculate the t-statistic for difference in means of the two groups as a normalized measure of

distance between the two distributions. We then randomly permute group membership (i.e.

simulating randomly assigning the observed efforts to be in either the Unknown or Known

cost condition) 10,000 times, and calculate the resulting t-statistics for difference of means

of these artificially generated groups. Then, we use this generated reference distribution to

calculate a p-value for our observed test statistic. For clarity on the permutation test, Figure

6 displays the reference distribution generated from Monte Carlo sampling in gray for one of

our tests. In red is the value of the t-statistic (and absolute value) observed for the difference

in means between the high-high known and unknown conditions.

A permutation test of the null hypothesis that the mean of efforts from high-high cost

pairings under the unknown and known conditions are the same yields a p-value of 0.0046.

Because of the use of Monte Carlo sampling (a computation method that depends on which

random draws are observed), we construct a Binomial proportion 99% confidence interval

for the p-value which yields approximately: (0.0029,0.0063), so the p-value is significant at

the 1% significance level. Thus, we reject the null hypothesis. We have sufficient statistical

evidence to conclude that effort choices of the high-high cost pairings under the unknown

condition are on average lower than the known condition. This difference can be observed in

Figure 5e and 5a. The results of permutation tests for the differences between distributions

of effort for the other cost pairings (high-low, low-high, and low-low) between unknown and

known conditions can be found in Table 9. The p-values of these tests were all larger than

0.8, so we fail to reject the null that the distance between the distributions is nonzero.

We also conduct two-sample Kolmogorov-Smirnov tests to test the null that the two

samples of effort choices were drawn from the same distribution. We reject the null for

high-high cost pairings under the unknown and known conditions with a p-value of 0.0028.
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Figure 6

So, we conclude that the two samples do not come from the same distribution. We fail to

reject the null for all other combinations of cost pairings (high-low, low-high, and low-low)

between unknown and known conditions. The results of these tests can also be found in

Table 9.

6.1.1 Discussion of Result 1

Our theoretical analysis of the game predicts that, holding pairings of cost types constant,

efforts would depend on information, with players who have incomplete information putting

forth lower efforts than their counterparts who had full information in the early periods.

Based on qualitative observations and the results of our permutation tests for differences in

our distribution, this prediction (Hypothesis 1) is only supported for certain cost pairings.

While there was a difference between the high-high cost pairings where both players are

assigned cost of effort: bhigh when these costs are known and unknown, this difference did

not hold for the other cost pairings with varying information.
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Comparison (Period 1) p-values

X Y
Permutation
Test (X̸=Y)

Kolmogorov-
Smirnov (X̸=Y)

High-High Unknown High-High Known 0.0046*** 0.0028***
High-Low Unknown High-Low Known 0.8285 1
Low-High Unknown Low-High Known 0.8544 0.8568
Low-Low Unknown Low-Low Known 1 0.8183
*** indicates significance at the 1% significance level.

Table 9: Results of permutation test and two sample Kolmogorov-Smirnov test for differ-
ences in distributions for the unknown versus known information conditions – holding cost
matching constant in period 1.

In relation to the high-high cost pairings with incomplete information, where a(1−α) =

0.5 < 0.65 = b1, referring to Figure 3a the rational agent should choose to match the effort of

the lowest expected effort (which, by assumption, is that of the high cost player). In section

3.3.1, we show that any deviations from this best response is a trade off between variance

and expected value. So we conjectured that the lower efforts in the unknown condition could

be explained by risk attitudes because incomplete information added a more salient element

of risk.

As a way of exploring this explanation, refer to the scatter plot given in Figure 7.

There appears to be no trend between our collected, informal measure of risk aversion (not

incentivized) and chosen effort level in period 1 for those who were in the unknown condition

(in blue), and it does not appear to be any different from the relationship between risk and

effort choice for those in the known condition (in red). This casts doubts on the explanation

provided earlier in our analysis.

Our analysis of the game in the case of private information case does not fully explain why

the low and low cost pairings do not seem to differ by known versus unknown information

even though those in the unknown cost condition can expect to face lower efforts. Our

analysis from figure 3b does suggests that if the players in the unknown condition have low

enough costs, that they should try to match the efforts of the low cost person who would
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Figure 7

put out the higher effort. However, in this uncertain environment, we expected risk averse

attitudes to be more consequential and lead individuals to lower their effort choices in the

private information case.

Our analysis for the known cost condition fails to explain certain qualitative observations

about the high-low and low-high cost pairing condition in the known case without any

supplementary theory. In this case, low cost individuals put forth higher effort despite the

fact that they are matched with a high cost opponent from whom they should expect lower

efforts. The high cost players who know they are matched with a low cost opponent should

be expecting to see higher efforts and trying to match that. One possible explanation would

be to treat players as k-level thinkers that are trying to anticipate the response of others.

An alternative explanation for these unexpected results and the differing effort levels

between the uncertain and certain cost conditions for high cost pairings is that the expected

efforts of high cost and low cost individuals are not the same for the unknown and known cost
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conditions. In the complete information setting with same cost pairings (which is applicable

to the high cost pairing in the Known condition), players only hear about one cost type in

our experiment. While players in the mixed and unknown cost conditions were informed

about the existence of two cost types by necessity. This may have created the expectation

for participants that players with different cost types should be expected to choose different

effort levels. The high cost player in the known mixed cost condition may have played a

lower effort to match that expectation for their role, and the low cost player, for a similar

reason, may have played higher efforts. In the case of unknown vs. known, if players believed

the expectation for the high cost player is to play lower effort than low cost types, then the

lower efforts put forth could be an artifact of playing out these roles and not a result of risk

averse attitudes. If this experiment were to be replicated, it may be worth standardizing

the information players see across all types: that is, even if knowing about the existence of

another cost type seems extraneous to the known cost pairings with the same cost types,

perhaps they should have been informed of it to keep that information constant across all

treatment conditions.

Hypothesis 1. (Initial Choice) - Summary of Results: We find empirical evi-

dence that for high cost pairings the initial effort choices will be lower for the unknown costs

condition than for the known cost condition. However, risk aversion does not explain this

difference in efforts. Further, the prediction that there will be lower efforts in the case of

incomplete information does not hold for other cost pairings.

6.2 Result 2: Convergence, Information and Costs

Figure 8 reports line graphs showing the average effort of participants across various cost

matchings: high-high cost, mixed cost, and low-low cost, by whether the participants had

complete or incomplete information. These line charts show the trend of the average efforts

from period 1 to 10.

Figure 9 is a line graph that shows the average effort trends for individuals based on
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Figure 8
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Figure 9: Compared to the other charts, the y-axis (Effort) is readjusted to a range of 50-60
for better readability without loss of data.

the interaction between their cost type and the information condition they were in: known

versus unknown.

Figure 10 gives histograms of effort choices in period 10 (the final period for of part

1) for each possible combination of match types for groups of size of 2. The breakdown is

similar to Figure 5. Orange bars indicate players were in the unknown cost condition. Blue

bars indicate that the players were in the known cost condition.

To investigate Hypothesis 2a, we conduct permutation tests (again performed compu-

tationally using a reference distribution generated through Monte Carlo sampling) of the

null hypotheses that there is no difference in the average effort choices from the unknown

versus known conditions for each cost type pairing in period 10. For all pairings, high-high,

high-low, low-high, and low-low, the p-values were larger than 0.3. Thus, we fail to reject

the null that the average effort under the unknown and known conditions are not differ-

ent in period 10 holding cost type constant. These results are corroborated by two-sample
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Figure 10

Kolmogorov-Smirnov tests we conduct to test the null that the two samples of effort choices

from the unknown and known conditions were drawn from the same distribution. We fail

to reject the null when testing the unknown versus known condition for all combinations of

cost pairings in period 10. The results of these tests can be found in Table 10 under the row

titled Hypothesis 2a.

For Hypothesis 2b, we conduct a permutation test of the null hypothesis that there is no

difference in the mean of effort choices between the low-low unknown and low-high unknown

groups in period 10. The resulting p-value is 0.0028, with a 99% confidence interval (needed

because we use computational methods for this test) of (0.0014,0.0042). The p-value is

significant at the 1% significance level, so we reject the null and conclude that the distribution

of effort choices for low cost players facing high cost opponents (low-high) is significantly

different from that of low cost players facing low cost opponents (low-low) holding incomplete

information constant in period 10. Using the two-sample Kolmogorov-Smirnov test, we also
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Comparison (Period 1) p-values

X Y
Permutation
Test (X̸=Y)

Kolmogorov-
Smirnov (X̸=Y)

Hypothesis 2a
High-High Unknown High-High Known 1 0.1343
High-Low Unknown High-Low Known 0.8521 0.7846
Low-High Unknown Low-High Known 0.3006 0.6941
Low-Low Unknown Low-Low Known 0.3398 0.2391

Hypothesis 2b
High-High Unknown High-Low Unknown 0.6112 0.7833
High-Low Unknown Low-High Unknown 1 1
Low-High Unknown Low-Low Unknown 0.0028*** 0.0031***
*** indicates significance at the 1% significance level.

Table 10: Results of permutation test and two sample Kolmogorov-Smirnov test for differ-
ences in distributions in period 10. Those under 2a hold cost pairing constant, and those
under 2b hold information constant.

reject the null that the efforts from the low-low cost pairings vs low-high under the unknown

conditions came from the same distribution since the test gives a p-value of 0.0031. So

we conclude that the two efforts distributions observed in the low-low unknown and low-

high unknown conditions do not come from the same distribution. Testing the null that

the efforts in the low-high unknown and high-low unknown conditions come from the same

distribution yields insignificant results. Testing the null that the efforts in the high-high

unknown and high-low unknown conditions come from the same distribution also yields

insignificant results. The results of these tests can also be found in Table 10 under the row

titled Hypothesis 2b.

6.2.1 Discussion of Result 2

To explore our prediction about the impact of information on converge, refer to Figure

9 which shows the effect of the interaction between costs and information on average effort

choices. Qualitatively, the effect of information seems to be negligible in the later periods

where it seems like the impact of costs dominates. The solid lines which represent effort

choices of low cost individuals seems to converge to the same level of effort regardless of
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the information condition. The same is true about the dotted lines which represent average

effort choices of high cost individuals.

The results of the permutation tests find no significant difference in the average of effort

choices between the unknown and known cost condition in period 10 holding any of the

cost pairings constant. The Kolmogorov-Smirnov tests also find no significant evidence to

suggest that the effort choices from the known and unknown cost conditions came from

different distributions holding cost pairings constant in period 10. Of particular interest,

is that the significant difference we found between the average efforts and distribution of

efforts for the high-high cost pairings in the unknown versus known cost conditions in period

1 disappears by period 10 which allowed for repeated play and convergence to an equilibrium.

Hypothesis 2a. (Convergence & Information) - Summary of Results: We fail

to find significant empirical evidence to reject the null hypotheses that the average effort

and effort distributions are different for the cases of complete information versus incomplete

information in period 10. This finding is in support of Hypothesis 2a that average effort

choices under incomplete and complete information will converge to the same level.

From Figure 5e through 5h, it seems that in period 1 with unknown costs, high cost

individuals in either the high-high and high-low pairings tend to put forth similar efforts

centered around an intermediate effort above 50 regardless of their match. Additionally,

Low cost individuals in either the low-low and low-high efforts also seem to put forth similar

efforts (left skewed with the modal effort being 60) regardless of their match. This fits what

one might expect: the only information these players have is their own cost type, so they

should perform similarly as they had no other differentiating information in period 1. From

Figure 10e and 10b, the mode for the high-high cost pairings was 50, which was lower than

the mode for the high-low cost pairings which was 60. From Figure 10g and 10d and the

results of the permutation test, we can say that there was a significant difference between

the distributions of effort for the low-high and low-low cost, with the low-low cost matching

putting forth significantly higher efforts.
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These differences in effort distribution somewhat match the solution yielded by the po-

tential function which gave us predictions about the general hierarchy efforts would converge

to based on average effort costs. In particular, high cost matches should tend towards a lower

effort equilibrium, and low-high cost matches and low-low cost matches should tend towards

the higher effort equilibrium. This found effect of costs on the level of effort players converge

to in the incomplete information case are also consistent with findings about the effect of

cost in the complete information case which we discussed in section 1.

Applying stochastic potential, and maximizing it to find a Quantal Response Equilibrium

might explain the statistically significant differences we saw in the effort distributions we saw

for low-high and low-low cost matches. This difference makes intuitive sense; if the group

has higher costs of effort on average, their players may be more reluctant to put forth higher

efforts. The differentiation in average efforts could indicate that players were able to learn

something about their partner and accurately update their beliefs about their partner’s cost

type through repeated play.

Hypothesis 2b. (Convergence & Costs) - Summary of Results: We find that, in

period 10, the low-low pairings under incomplete information contribute significantly higher

efforts than low-high pairings under incomplete information. We find no significant difference

in efforts contributed by players from the other cost pairings (high-low, low-high, and high-

high) which is contrary to our prediction that efforts from high-high pairings would be lower

on average than low-high pairings in the case of incomplete information.

7 Conclusion

Studying coordination in a rigorous way can benefit our understanding of many contexts

rooted in production and social interaction. The extensively studied minimum effort coordi-

nation game is a model for studying coordination, and has interested researchers because of

the presence of multiple pure strategy Nash Equilibria. Prior studies investigate the factors

which impact coordination in the case of complete information.
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In this paper, we formalized the case of incomplete information in the minimum effort

game so that individuals did not know their opponent’s exact cost of effort. We investigate

this variation on the model by extending the equilibrium refinement analyses done with

complete information to the case of incomplete information to develop a more rigorous

theoretical framework for how agents behave in this incomplete information space. Based on

this, we predict that, holding costs of effort constant, if individuals are risk averse, they will

contribute lower efforts in the incomplete information case than in the complete information

case. We also predict that the impact of incomplete information would disappear in later

rounds as individuals update their beliefs about their opponent. If these updated beliefs

accurately reflect the game environment, then in later periods the costs of people in a group

would predict what effort levels they converged to.

We find some evidence for our first prediction that holding costs constant, players in

the case of incomplete information would put forth less effort than in the case of complete

information. In our experimental treatment with high and high cost pairings and unknown

information, individuals put forth significantly less efforts than individuals in the high and

high cost pairing with known information treatment in period 1. However, we find little

support for our suggestion that risk aversion would explain this prediction. We also find

evidence for our second prediction. The efforts of people, holding constant their cost pairings,

were not significantly different between the known (complete information) condition and

the unknown (incomplete information) condition. Further, individuals that had low costs

of effort in the unknown information condition started out choosing the same efforts on

average regardless of whether their match type was high or low. But, by period 10, there

was a significant difference in the effort choices of low cost individuals. Those who were

paired with a high cost type in the low-high cost pairing converged to lower efforts than

those who were paired with another low cost type in the low-low cost pairing.

Many of the scenarios that motivate studying the minimum effort coordination game are

more closely represented by the case of incomplete information for players. Thus investigating
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the differences and similarities between the complete information and incomplete information

cases is important for extending the findings in the literature about coordination to more

commonplace contexts. Our findings would benefit from replication with some modification

to the design to rule out the possibility of the results being an artifact of a small difference in

the instructions which impacted whether players knew about the existence of other cost types

(despite these types being irrelevant to the players who did not hear about it). Additionally,

replication of our experiment and further study can help develop our understanding of how

and why behavior surrounding coordination in the complete information and incomplete

information cases differ.
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Appendix A: Sample Experiment Instructions

General Experiment Instructions:

Experiment Start:
This is an experiment in decision-making and social dilemmas. There are 5 parts, each of which
consist of a sequence of 10 "periods". You will receive general instructions for the task, then
specific instructions for each part as you complete them.

From now until the end of the experiment, please refrain from communicating with other
participants unless asked to do so. If you have a question, feel free to raise your hand, and an
experimenter will come to help you.

General Task Instructions:
You will be matched in groups with the same people in all periods for a part. When parts change,
your group and the size of your group may change. You will not know the identity of the others
you are matched with. Your earnings will depend upon the decisions you make and on the
decisions of others. During the duration of today’s experiment, you will be earning tokens
indicated by the following sign: “@”. These will be converted to $USD at the end of the
experiment according to the rate we will announce in the “Earnings” section.

Every period, each person in your group will choose an effort of 40, 45, 50, 55, or 60. These
decisions are made simultaneously. You cannot see the choices of others while making your
decision, and vice versa.

You will earn a number of tokens equal to the smallest of the efforts chosen by you and the other
people you are matched with, minus the cost of your own effort, which is C times your own
effort choice. You will always know about your cost, but you may or may not know the cost of
others. Your cost type may be varied throughout this experiment, but your cost type will stay
constant in each part. Your payoffs are outcomes of this cost. This is captured by the equation:

Payoff (in Tokens) = Minimum Effort – C*Your Effort

Note that the minimum effort here refers to the smallest of the effort levels chosen by you and
ALL others in your group.

From here on, your payoffs, calculated using the previous formula, will be conveyed through
tables. You will refer to your “Tables Packet” throughout the experiment for these payoff tables.
These tables tell you about your payoff and the payoff of others in your group for any possible
combination of efforts your group may choose. The rows always represent effort choices of
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either you or someone in your group, and the columns always represent the minimum of your
group’s chosen efforts. The white cells convey the payoff for either you or someone else in your
group for the corresponding chosen effort and minimum group effort. The grayed out cells are
empty and impossible to achieve because if, for example, you choose an effort of 50, then the
minimum of your group’s chosen efforts cannot be greater than your own, which in this case is
50. The tables will be explained in further detail in each part of the experiment, along with an
example of how to read them for that particular part.

Information about cost will vary from part to part. These changes will be explained in each part
of the experiment.

Your group size will vary from part to part. An announcement will be made about group size in
each part. You will also be reminded of your group size on the software you will be using for this
experiment.

Earnings:
In each period, after you make your effort decision, we will show you a list of your past effort
choices and payoffs. We will also show you a running tally of the number of tokens you have
earned in the ongoing part of the experiment. Your earnings are given in tokens. We will convert
your total earnings from all parts into a dollar amount based on the exchange rate:

$1 (USD) = @125 (tokens).

In addition, you will receive a $10 show-up fee. Everyone will be paid privately IN CASH and
you are under no obligation to tell others how much you earn. To help keep track of your
payments from your performance, you have been assigned a code number which you will be
asked to enter at the beginning of each part. Any link between this number and your name will
be destroyed once the experimental session has concluded.

Your payoff, your decisions, and the answers in the questionnaire will be treated confidentially.
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Part A1 Instructions:

Group Size Announcement:
The group size for this part is 2. So you will be matched with one other person. You will also be
reminded of your group size on the software you will be using for this experiment.

Effort Cost Announcement:
For this part, there are two types. The types differ in per-unit effort cost: C. Type 1 has C= 0.65,
and Type 2 has C=0.15.

All participants are randomly assigned to be either Type 1 or Type 2. This is similar to a coin flip
with heads being Type 1, and tails being Type 2. Each person has a 50% chance of being either
type. Because Type assignment is random, you do not know your match’s Type and vice versa.

If you are Type 1:
Your C = 0.65. Your payoffs are captured by Figure 1, Table 11.

Referring to Table 11: If you choose an effort of 40, you are in the row for 40. If your match
chooses an effort of 60, then the minimum of both your efforts is 40. So, you are in the column
for 40. That row and column meet in the cell with the number: @14.00, so you earn @14.00
(tokens).

You don’t know about your match’s exact Type. They could be either Type 1 OR Type 2. Thus,
your match’s payoffs are captured by either Table 12 OR Table 13.

Referring to Table 12: This table represents one of your match’s possible payoffs. Using the
same choices from the previous example, your match is in the row for 60 because they chose an
effort of 60. However, the group minimum was 40, so your match is in the column for 40. That
row and column meet in the cell with the number: @1.00, so your match earns @1.00 (tokens).

Referring to Table 13: This table represents one of your match’s possible payoffs. Using the
same choices from the previous example, your match is in the row for 60 because they chose an
effort of 60. However, the group minimum was 40, so your match is in the column for 40. That
row and column meet in the cell with the number: @31.00, so your match earns @31.00
(tokens).

Thus your match could either earn @1.00 or @31.00 from this combination of effort choices.
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If you are Type 2:
Your C = 0.15. Your payoffs are captured by Figure 2, Table 21.

Referring to Table 21: If you choose an effort of 40, you are in the row for 40. If your match
chooses an effort of 60, then the minimum of both your efforts is 40. So, you are in the column
for 40. That row and column meet in the cell with the number: @34.00, so you earn @34.00
(tokens).

You don’t know about your match’s exact Type. They could be either Type 1 OR Type 2. Thus,
your match’s payoffs are captured by either Table 12 OR Table 13.

Referring to Table 22: This table represents one of your match’s possible payoffs. Using the
same choices from the previous example, your match is in the row for 60 because they chose an
effort of 60. However, the group minimum was 40, so your match is in the column for 40. That
row and column meet in the cell with the number: @1.00, so your match earns @1.00 (tokens).

Referring to Table 23: This table represents one of your match’s possible payoffs. Using the
same choices from the previous example, your match is in the row for 60 because they chose an
effort of 60. However, the group minimum was 40, so your match is in the column for 40. That
row and column meet in the cell with the number: @31.00, so your match earns @31.00
(tokens).

Thus your match could either earn @1.00 or @31.00 from this combination of effort choices.

Part A1 Summary
● Part A1 consists of 10 periods. In each period you will make a decision.
● You choose an effort decision of 40, 45, 50, 55, or 60.
● You will be matched with one match for all periods of this part.
● Your payoff is determined by: your chosen effort, your match’s effort, and your cost type.
● There are two cost types. Participants are assigned as if by a coin flip (50/50) to one of

the two cost types.
● You will keep your assigned Type for all 10 periods in this part.
● You do NOT know your match’s type.
● @125 tokens correspond to $1 USD. Your payoff from all periods will be summed up

and converted into cash at the end.
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Part A2 Instructions:

Group Size Announcement:
The group size for this part is larger than 2. So you will be matched with multiple other people.
The experimenter will announce the exact number. You will also be reminded of your group size
on the software you will be using for this experiment.

Remember, regardless of your group size, your payoff depends on the minimum of the effort
choices of ALL the people in your group - including your effort choice.

Effort Cost Announcement:
For this part, there are two types. The types differ in per-unit effort cost: C. Type 1 has C= 0.65,
and Type 2 has C=0.15.

All participants are randomly assigned to be either Type 1 or Type 2 as described in Part A1.

If you are Type 1:
Your C = 0.65. Your payoffs are captured by Figure 1, Table 11.

Referring to Table 11: If you choose an effort of 40, you are in the row for 40. If you are in a
group of 5, and the others choose: 50, 50, 50, 60, then the minimum of all efforts in your group is
40. So, you are in the column for 40. That row and column meet in the cell with the number:
@14.00, so you earn @14.00 (tokens).

You don’t know about the exact Type of others in your group. They could be either Type 1 OR
Type 2. Thus, their payoffs are captured by either Table 12 OR Table 13.

If you are Type 2:
Your C = 0.15. Your payoffs are captured by Figure 2, Table 21.

Referring to Table 21: If you choose an effort of 40, you are in the row for 40. If you are in a
group of 5, and the others choose: 50, 50, 50, 60, then the minimum of all efforts in your group is
40. So, you are in the column for 40. That row and column meet in the cell with the number:
@34.00, so you earn @34.00 (tokens).

You don’t know about the exact Type of others in your group. They could be either Type 1 OR
Type 2. Thus, their payoffs are captured by either Table 12 OR Table 13.

Part A2 Summary
● Similar to A1 except for: your group size is now GREATER than 2 instead of just 2.
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Part B1 Instructions:

Group Size Announcement:
The group size for this part is 2. So you will be matched with one other person. You will also be
reminded of your group size on the software you will be using for this experiment.

Effort Cost Announcement:
For this part, there is one relevant cost type which has per-unit effort cost: C=0.65.

All participants are assigned to be this same type. Thus, you and your match are the same type
with C=0.65. Your payoffs are captured by Figure 5, Table 51.

Referring to Table 51: If you choose an effort of 40, you are in the row for 40. If your match
chooses an effort of 60, then the minimum of both your efforts is 40. So, you are in the column
for 40. That row and column meet in the cell with the number: @14.00, so you earn @14.00
(tokens).

Referring to Table 52: This table represents your match’s payoffs. Using the same choices from
the previous example, your match is in the row for 60 because they chose an effort of 60.
However, the group minimum was 40, so your match is in the column for 40. That row and
column meet in the cell with the number: @1.00, so your match earns @1.00 (tokens).

Part B1 Summary
● Part B1 consists of 10 periods. In each period you will make a decision.
● You choose an effort decision of 40, 45, 50, 55, or 60.
● You will be matched with one match for all periods of this part.
● You payoff is determined by: your chosen effort, your match’s effort, and your cost type
● There is one relevant cost Type. Participants are assigned to the same type.
● You will keep your assigned Type for all 10 periods in this part.
● You know your match is the same type as you.
● @125 tokens correspond to $1 USD. Your payoff from all periods will be summed up

and converted into cash at the end.
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Part B2 Instructions:

Group Size Announcement:
The group size for this part is larger than 2. So you will be matched with multiple other people.
The experimenter will announce the exact number. You will also be reminded of your group size
on the software you will be using for this experiment.

Remember, regardless of your group size, your payoff depends on the minimum of the effort
choices of ALL the people in your group - including your effort choice.

Effort Cost Announcement:
For this part, there is one relevant cost type which has per-unit effort cost: C=0.65.

All participants are assigned to be this same type. Thus, you and your match are the same type
with C=0.65. Your payoffs are captured by Figure 5, Table 51.

Referring to Table 51: If you choose an effort of 40, you are in the row for 40. If
you are in a group of 5, and the others choose: 50, 50, 50, 60, then the minimum of all efforts in
your group is 40. So, you are in the column for 40. That row and column meet in the cell with the
number: @14.00, so you earn @14.00 (tokens).

Referring to Table 52: This table represents the payoffs of the others in your group.

Part B2 Summary
● Similar to B1 except for: your group size is now GREATER than 2 instead of just 2.
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Appendix B: Sample Tables
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Appendix C: Sample Decision Software (Coded in z-Tree)
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