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Abstract

This paper examines the impact of automation on unionization trends across 15 robot-

exposed U.S. industries from 2004 to 2021. To estimate causal effects, I implement a first-

differences regression design, leveraging variation in European robot adoption as an instru-

ment for U.S. robot density. My IV estimates indicate that, for a given industry, a one-unit

increase in robots per hundred workers leads to a 0.9 to 1.2 percentage point decline in the

unionization rate — a substantial impact relative to baseline rates of 5 to 15%.
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Cosar, and my lovely cohort members for their invaluable guidance and support — this endeavor would
not have been possible without you. Lastly, which is ironic given the subject of this paper, thank you to
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1 Introduction

In October 2024, over 47,000 members of the International Longshoremen’s Association (ILA), a major

North American labor union representing dockworkers, went on strike over contract disputes and concerns

about automation; in particular, the deployment of semi-automated cranes.1 2 Though not explicitly stated,

the ILA’s message was clear: the union sought to act as a ‘safe haven’ protecting workers from automation-

driven displacement. This episode sparked my research question: Does increased exposure to automation

drive workers to join or to leave unions?

1.1 Observation #1: Falling Unionization

To frame this research question, it is helpful to consider historical trends in unionization and automation.

Figure 1 shows that the average union membership rate in the United States has declined steadily over recent

decades.3 However, the decline is not uniform across sectors. Industries characterized by routine physical

tasks, such as manufacturing and mining, exhibit sharper declines compared to service-oriented industries.

This suggests that industries more exposed to automation may have experienced faster declines in union-

ization. This trend is not unique to the United States. Appendix A shows that unionization rates across

Europe have also fallen since 1980.

Why has unionization declined?

Balcázar (2024) identifies three key explanations. First, the institutional thesis emphasizes legal changes,

such as Right-to-Work laws, which have weakened unions’ bargaining frameworks. More and more states

have adopted these over the years, including Indiana (2012), Wisconsin (2015), Kentucky (2017), and West

Virginia (2016) within the last fifteen years.4 Second, the structural thesis attributes union decline to struc-

tural shifts in employment from historically-unionized manufacturing sectors toward less-unionized service

sectors. Third, the market competition thesis posits that globalization and technological competition have

weakened the incentives for both firms and workers to support unionization, since the cost of offshoring is

lower. These forces together have exerted steady downward pressure on unionization rates.

Why does this matter?

1Doyinsola Oladipo and David Shepardson, “US Dockworkers Strike, Halting Half the Nation’s Ocean Shipping,” Reuters,
October 1, 2024.

2Lori Ann LaRocco, “Ila Union and Port Owners Held Secret Meeting on Automation as New Strike Looms,” CNBC,
January 7, 2025.

3Statista. ”Labor Unions in the U.S.” 2024.
4“Right-to-Work Resources,” National Conference of State Legislatures, December 19, 2023, https://www.ncsl.org/

labor-and-employment/right-to-work-resources.
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Figure 1: U.S. Labor Union Membership Trends, 2000–2024 (Source: Statista)

The sharp decline in unionization in ’highly automatable’ industries relative to stable unionization in the services

industries provided initial evidence for the paper.

Declining unionization has significant consequences for labor markets. Unions have historically raised

wages, improved working conditions, and amplified workers’ political voice. Card, Lemieux, and Riddell

(2004) show that unions reduce wage inequality, particularly among men. Beyond wages, unions have

historically secured non-wage benefits like healthcare, retirement plans, and workplace protections. Their

decline likely contributes to deteriorating job quality and a weakening of labor’s political influence.

1.2 Observation #2: Rising Robots

In contrast to the declining unionization trend, robot adoption has risen dramatically across all major

industries. Figure 2 shows that the stock of operational robots has expanded significantly in both the

United States and Europe across sectors. While the magnitude is somewhat higher in Europe, the trends

are strikingly similar. I use the number of operational robots per hundred workers—a measure of ‘robot

exposure’—as my primary proxy for automation exposure, building upon but slightly simplifying previous

measures discussed in the Data and Variables section.
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Figure 2: Robot Stock by Industry in the U.S. vs Europe (Source: IFR)

The U.S. and Europe have very similar robot adoption trends for each industry. This correlation will be helpful in

instrumented U.S. Robot Density in the specifications.

Observation #3: Robot Exposure Displaces Routine Jobs

Acemoglu and Restrepo (2020) find that increased robot adoption leads to significant displacement of

manufacturing jobs, particularly those involving routine tasks. Their findings, illustrated in Appendix B,

reveal a strong negative correlation between employment and robot exposure. Autor and Dorn (2013)

show that routine-biased technological change has polarized labor markets, eroding middle-skill employment

while boosting low- and high-skill service jobs (See Appendix C). Together, these studies imply that robot

exposure erodes sectors traditionally associated with strong unionization, reinforcing the plausibility of a

negative effect on union membership.

Observation #4: Unions Have Power Against Automation, But That Power is

Weakening

Recent research suggests that unions still retain some power to resist the disruptive effects of automation.

Lewandowski and Szymczak (2024) find that higher trade union coverage significantly mitigates the adverse

effects of robot adoption on ’atypical employment’, which refers to jobs that deviate from traditional full-

time arrangements. Increases in atypical employment are common when workers in traditional roles are
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displaced. Lewandowski and Szymczak conclude that “higher unionisation significantly reduces robots’

impact on atypical employment,” suggesting that collective bargaining plays a meaningful role in shielding

workers from technological displacement.

However, other evidence indicates that this protective power is eroding. Balcázar (2024) estimates that

an increase in one robot per a thousand workers per year reduces the unionization rate by 0.07 percentage

points and the likelihood that congresspeople vote with unions’ interests by two percentage points. This

effect is large and relevant considering that union density has decreased on average 0.3 percentage points

per year from 1964-2021 (Hirsch, Macpherson and Even, 2025). In this view, while unions may retain the

ability to moderate some immediate impacts of automation, their structural position in the labor market is

gradually deteriorating as technological change accelerates.

Taken together, these findings suggest a nuanced story: unions do have some capacity to buffer workers

against automation-induced disruptions, but this capacity is being increasingly undermined over time. As

robot intensity continues to rise across industries, the ability of unions to meaningfully resist labor market

polarization and erosion may diminish further.

Contribution

Most research examines how automation affects firms’ labor demand, but relatively little is known about

how it influences workers’ decisions regarding collective organization. Understanding how automation re-

shapes union membership is critical for designing labor policies that are adaptive rather than merely pre-

scriptive. As Lewandowski and Szymczak (2024) emphasize, unions play a “particularly relevant role in

shaping the labor market impacts of automation.” Recognizing whether unions can act as a buffer against

technological disruption, or whether they are themselves undermined by it, is central to understanding the

evolving balance of power between labor and capital.

Prior studies offer valuable insights into how automation reshapes labor market outcomes, particularly

wages and employment. This paper draws heavily from Acemoglu and Restrepo (2020) for methodological

inspiration and from Balcázar (2024) as a benchmark for comparison. However, my paper differs from the

existing literature in three key respects.

First, in data construction: I use CPS-based union estimates from IPUMS, while Balcázar (2024) relies on

union filings collected by Becher, Stegmueller, and Kappner (2018), who collect data from annual Department

of Labor reports and harmonize this data at the congressional district level. Second, in time horizon: I extend

the sample to 2021, whereas previous studies focus only through 2014. This is important because robot

installations and technological advancements have accelerated significantly since then. These additional
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seven years allow me to examine more long-run effects, and how the impact of automation exposure changes

post-2014. Third, I experiment with alternative measures of automation exposure, such as robot density per

hundred workers in each industry, offering a simpler and more interpretable proxy relative to the commuter-

zone adjusted metrics used elsewhere. Overall, my goal is to update, extend, and complement prior work

on the relationship between automation and unionization, capturing more recent trends in technological

adoption and labor market transformation. In particular, I seek to examine whether the accelerating spread

of industrial robotics has contributed to the strengthening of unions in the United States.

Research Question and Hypotheses

Motivated by these considerations, the study is guided by the following research question and correspond-

ing hypotheses:

Research Question (RQ): Does increased robot density influence unionization rates

across industries?

Null Hypothesis (H0): Changes in robot density have no effect on unionization

rates.

Alternative Hypothesis (Positive) (HA1): Changes in robot density positively

affect unionization rates.

Alternative Hypothesis (Negative) (HA2): Changes in robot density negatively

affect unionization rates.

Initially, I hypothesized a positive causal relationship, reasoning that greater exposure to automation

might spur workers to organize collectively as a defense against technological displacement. Rising au-

tomation risk, under this logic, could incentivize unionization as a mechanism for securing job protections,

retraining programs, or severance benefits. However, as the results presented later demonstrate, the evi-

dence instead supports the negative hypothesis: greater automation exposure is associated with a decline in

unionization rates. One plausible explanation is that automation reduces the costs firms incur during labor

disputes, thereby weakening workers’ bargaining power. In environments where capital can readily substitute

for labor, the traditional threat of work stoppages becomes less effective, diminishing unions’ leverage and

eroding incentives to organize.

To rigorously test these hypotheses, I employ both ordinary least squares first-differences (OLS-FD) and

two-stage least squares first-differences (IV-FD) designs. The use of both OLS and IV approaches enables
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assessment of the stability of the estimated causal relationship across alternative specifications. Full details

of the regression designs and identification strategies are presented in the Empirical Strategy section.

2 Data and Variables

This study utilizes several high-quality datasets to examine automation exposure, labor market char-

acteristics, and unionization trends across U.S. industries. These data sources enable the construction of

robust empirical measures and facilitate causal inference regarding the relationship between automation and

unionization.

Robots

Precisely defining automation exposure presents several challenges. Building on prior work by Acemoglu

and Restrepo (2020), I utilize data from the International Federation of Robotics (IFR), the leading source

of industry-level robot adoption statistics. The IFR reports data at the national-industry level using an

adjusted version of the ISIC Revision 4 classification. A sample of the IFR data is presented in Table 1:

Year Industry Code Industry Name Country Code Operational Stock

2004 0 All Industries US 123,663

2004 90 All other non-manufacturing branches US 0

2004 2939 Other (AutoParts) US 0

2004 2934 Glass (AutoParts) US 0

2004 2933 Electrical/electronic (AutoParts) US 0

2004 2932 Rubber and plastic (AutoParts) US 0

Table 1: Sample of U.S. Industry Data (2004)

While the IFR data are invaluable, they have limitations. Data are reported only at the national level,

and not all robots are assigned to one of the 15 main IFR industries, potentially omitting some automation

activity. Mismatches between IFR and U.S. industry classifications may introduce measurement error, and

earlier years often have zero robots, particularly for less robot-intensive industries. Additionally, differences in

adoption timing between Europe and the U.S. may complicate comparative analysis. Despite limitations, IFR

data remain the standard for measuring automation exposure across sectors due to their broad international

coverage and consistent reporting methodology.
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For my main explanatory variable, rather than replicating Acemoglu and Restrepo’s “Adjusted Penetra-

tion Rate” (APR), I adopt a simpler, realized measure: Robot Density, defined as the number of operational

robots per hundred workers within an industry. Total employed workers are computed using EARNWT from

the IPUMS CPS dataset.

Robot Densityit =
Number of Robotsit

Total Employed Workersit
× 100

Unions

Unionization measures are constructed using data from the Integrated Public Use Microdata Series

(IPUMS) version of the Current Population Survey (CPS). The CPS provides detailed annual information

on union membership and labor market outcomes. A sample of the CPS data is presented below in Table 2:

Year State Code IND1990 Code Union Income ASECWT EARNWT

2004 23 601 0 28,000 289 2,238

2004 23 641 0 2,500 304 2,112

2004 23 761 0 4,185 289 2,238

2004 23 360 0 52,863 289 2,088

2004 23 831 0 35,000 298 2,365

2004 23 840 0 69,000 239 2,279

Table 2: Sample of IPUMS Microdata (Selected Columns)

Union membership is reported through the UNION variable, categorized as “No response (0),” “No union

coverage (1),” “Member of a labor union (2),” and “Covered by a union but not a member (3).” I recode this

into a binary indicator (UNIONBinary): UNION=2 is classified as a union member (1), while UNION=1

or UNION=3 are classified as non-members (0), and no responses are removed from the data.

Unionization Rateit =
Unionized Workersit

Total Employed Workersit

where Unionized Workersit =
∑

j∈{i,t}

EARNWTj × UNIONBinaryj

and Total Employed Workersit =
∑

j∈{i,t}

EARNWTj for all j in the labor force

Despite its advantages, the CPS data has limitations. Union membership data suffer from high nonre-

sponse rates (over 95% of the sample), limiting representativeness. No certified crosswalk exists between
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IND1990 and the IFR’s ISIC Rev. 4 industries, requiring manual mapping (See Appendix D). Survey weights

(EARNWT) are imperfect, and static industry classifications may not fully capture structural shifts. Nev-

ertheless, IPUMS CPS remains the best available source for analyzing long-term unionization trends across

U.S. industries.

Additional Covariates

To address potential confounders, I include (i) industry-level average wages and (ii) total employment.

Average wage is calculated as:

Mean Wageit =

∑
j∈{i,t} EARNWTj × INCWAGEj∑

j∈{i,t} EARNWTj

Industries with higher average wages may exhibit lower unionization rates if workers perceive less marginal

benefit to union representation or face higher opportunity costs to organizing. Total workforce size reflects

organizational capacity and bargaining leverage and serves as both a control variable and regression weight.

One shortcoming is that Income (INCWAGE) is self-reported and prone to measurement error and miss-

ingness; it reflects annual income without adjusting for hours worked, and is not inflation-adjusted. High

earners may also skew industry averages.

Excluded Variables

Right-to-Work laws (RWLs) are omitted from the baseline specification because RWL adoption may itself

be endogenous to automation exposure. Although RWLs are an important determinant of unionization, its

inclusion could bias estimates. Future work will incorporate RLWs more explicitly as a robustness check.

Import exposure, offshorability exposure, and capital growth are similarly excluded. These variables are

likely important for unionization outcomes but would require extensive external datasets and adjustments

beyond the scope of this analysis. In future research, I aim to more closely replicate frameworks like those

in Acemoglu and Restrepo (2020) and Autor, Dorn, and Hanson (2013) by integrating broader trade and

economic dynamics.

Summary Tables

After cleaning, Table 3 is a sample of the main dataframe for each industry in each year:
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Year Industry Workers Union Rate Robot Density Mean Wage Euro Robots

2004 Automotive 1,743,705 0.324 0.949 44,275 254,687

2004 Construction 10,224,495 0.164 0 36,511 350

2004 Electronics 2,121,138 0.0678 0.123 54,436 22,688

2004 Food 2,063,676 0.119 0.0304 36,775 6,521

2004 Metals (Basic) 783,618 0.331 0.176 40,752 38,601

2004 Metals (Machinery) 2,183,939 0.0629 0 50,089 2,285

Table 3: Sample of Industry-Level Data

We will compute absolute and percentage differences between variables of two different years (ex. 2004

and 2007) for our main regressions, outlined below.

3 Empirical Strategy: First Differences Model

Having constructed measures of industry-level automation exposure, unionization rates, and relevant

covariates, I now turn to the empirical strategy. The primary objective is to estimate the causal effect of

robot adoption on unionization outcomes across U.S. industries. To do so, I implement a first-differences

regression framework that exploits continuous variation in robot density across industries over time. This

approach removes time-invariant industry characteristics and enables identification of the impact of changes

in automation exposure on changes in unionization rates.

Following the conceptual approach of Acemoglu and Restrepo (2020), I exploit differences in the intensity

of automation exposure across industries, rather than a binary treatment. While a standard panel fixed-

effects model could still suffer from bias if industries inherently differ in unobserved trends correlated with

automation, differencing outcomes over time controls for persistent industry-specific factors. By examining

changes between specific periods, this framework mitigates concerns over structural differences and isolates

the relationship between automation and unionization dynamics. To strengthen causal inference and address

potential endogeneity, I estimate both OLS first-differences regressions and an instrumental variables (IV)

version that leverages European robot adoption as a source of exogenous variation.

9



3.1 OLS First-Differences Specification

The baseline OLS specification relates changes in unionization rates to changes in robot density and

additional covariates:

∆UnionizationRatei,t1,t2 = γ0 + γ1∆RobotDensityi,t1,t2 (1)

+ γ2∆%MeanWagei,t1,t2 (2)

+ γ3∆%WorkerPopulationi,t1,t2 + ϵi,t1,t2 (3)

In Equation 1, ∆UnionizationRatei,t1,t2 denotes the change in the unionization rate for industry i

between years t1 and t2, ∆RobotDensityi,t1,t2 captures the change in robot density (robots per hundred

workers), and ∆%MeanWagei,t1,t2 and ∆%WorkerPopulationi,t1,t2 control for changes in mean wages and

total workforce size, respectively. Figure 3 shows the negative correlation between U.S. Robot Density and

the Unionization Rate for some of the industries in my sample.

Figure 3: U.S. Robot Density vs. Unionization by Industry (Sources: IPUMS, IFR)

Within industries, robot density is negatively correlated with unionization rates from 2004-2021. Figure 3 depicts

the OLS plots for four of the fifteen IFR industries used in this analysis.

Although the first-differences model controls for time-invariant differences across industries, it may still
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be vulnerable to endogeneity if industries that adopt robots more rapidly also experience other simultaneous

shocks that independently affect unionization rates. Moreover, there is a potential concern of reverse causal-

ity: industries experiencing a decline in unionization could become more attractive targets for automation

investment, if lower union strength reduces the costs or resistance associated with adopting new technologies.

In such cases, observed correlations between rising robot density and falling unionization could reflect strate-

gic behavior by firms rather than a causal impact of automation itself. Finally, OLS estimates could suffer

from measurement error in robot density or other omitted variables that evolve jointly with both automation

exposure and unionization outcomes. To address these concerns and strengthen causal identification, I also

consider an instrumental variables (IV) strategy.

3.2 IV First-Differences Specification

To mitigate endogeneity concerns, I extend the analysis to an instrumental variables (IV) framework.

Following Acemoglu and Restrepo (2020), I instrument changes in U.S. robot density using changes in

European robot adoption patterns. European automation trends are plausibly exogenous to U.S. labor

market conditions, offering a credible source of quasi-random variation. As Acemoglu and Restrepo (2020)

note,”European robot adoption is a powerful predictor of U.S. industry-level robot penetration and, given

the geographic separation, unlikely to be directly influenced by U.S. labor market shocks.” Confidence

in the instrument relies on three core assumptions: relevance, exclusion, and the absence of unmeasured

confounders. First, European robot adoption must strongly predict changes in U.S. robot density (relevance).

Second, European robot use must affect U.S. unionization only through its impact on U.S. robot adoption and

not directly (exclusion restriction). Third, there must be no omitted variables simultaneously influencing

European robot adoption, U.S. robot adoption, and U.S. unionization outcomes. Based off of preceding

research findings, theoretical backing, and strong first stage F-statistics (as shown in Table 5), I am confident

in using European robot adoption to instrument U.S. Robot Density5. The first-stage regression estimating

predicted changes in U.S. robot density is specified as:

̂∆RobotDensityi,t1,t2 = π0 + π1∆EuropeanRobotsi,t1,t2 (4)

+ π2∆%MeanWagei,t1,t2 (5)

+ π3∆%WorkerPopulationi,t1,t2 + νi,t1,t2 (6)

5While this strategy builds on established precedent, one limitation arises: I am unable to replicate the exact one-to-one
mapping from European robots per worker to U.S. robots per worker employed by Acemoglu and Restrepo (2020). Attempts to
reconstruct this measure using the EUKLEMS dataset were hindered by missing data for post-2014 years, particularly regarding
hours worked variables. Consequently, I use changes in total European operational robot stock at the industry level as the
instrument in the first stage (See Equation 4). Preliminary scatterplots shown in Figure 4 reveal a strong positive relationship
between changes in European robot stock and changes in U.S. robot density, supporting the instrument’s strength.
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Figure 4: U.S. Robot Density vs. European Robot Stock by Industry (Sources: IPUMS,
IFR)

U.S. Robot Density and European Robot Stock appear to be highly correlated. While a 1-1 metric as the

instrument is preferred, this will suffice.

Whereas the second stage uses the predicted change in robot density to estimate the causal effect on union-

ization rates:

∆UnionizationRatei,t1,t2 = β0 + β1
̂∆RobotDensityi,t1,t2 (7)

+ β2∆%MeanWagei,t1,t2 (8)

+ β3∆%WorkerPopulationi,t1,t2 + ϵi,t1,t2 (9)

3.3 Timeframe

The analysis focuses on multiple time windows selected to capture distinct economic contexts. I first

examine changes from 2004 to 2007 to align with Acemoglu and Restrepo’s pre-recession focus and to exploit

a short-run horizon where automation shocks began to intensify but major macroeconomic disruptions had

not yet occurred. The 2004 to 2014 window extends the analysis to include the Great Recession and the

early recovery period, allowing an assessment of whether automation’s impact on unionization differed during

periods of economic stress. Finally, the 2004 to 2021 window captures the full available period, including the
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acceleration of automation in the mid-to-late 2010s. Comparing across these intervals enables assessment

of the stability or variation of robot adoption effects across different macroeconomic environments. Overall,

the combination of a first-differences regression approach with an instrumental variables strategy provides a

credible empirical framework for estimating the causal impact of automation on unionization trends. While

limitations remain, this design mitigates key sources of bias and strengthens the validity of the findings.

4 Results

With the empirical framework established, I now turn to presenting the results. I first examine baseline

estimates from ordinary least squares (OLS) first-differences regressions, which exploit continuous variation

in robot density across industries. I then present results from instrumental variables (IV) specifications that

address potential endogeneity concerns by using exogenous variation in European robot adoption. Through-

out, I assess the robustness of the findings across different time horizons and discuss their implications for

the evolving relationship between automation and unionization in the U.S. labor market.

4.1 OLS First-Differences Results

Table 4 presents estimates from OLS first-differences regressions examining the relationship between

changes in robot density and changes in industry unionization rates across three time horizons: 2004–2007,

2004–2014, and 2004–2021. Weighted regressions are done based on Populationi,2004 for each industry i.

Across all specifications, the results consistently reveal a negative association between increases in robot

density and subsequent changes in unionization rates.

13



Table 4: OLS First-Differences Regressions: ∆ Unionization vs ∆ Robot Density

Dependent variable:

∆ Unionization Rate
2004–07 2004–07 2004–14 2004–14 2004–21 2004–21

(1) (2) (3) (4) (5) (6)

∆ Robot Density -0.0409∗∗ -0.0341∗∗ -0.0064∗∗∗ -0.0071∗∗∗ -0.0079∗∗∗ -0.0076∗∗

(0.0138) (0.0126) (0.0018) (0.0021) (0.0023) (0.0027)
∆ Wages (%) -0.0945 -0.0528 0.0263 -0.0095 -0.0724 -0.0668

(0.1222) (0.1130) (0.0628) (0.0625) (0.0655) (0.0654)
∆ Population (%) 0.0779 -0.0166 -0.0533∗∗ -0.0338 -0.1663∗∗ -0.1449∗∗

(0.0999) (0.0821) (0.0223) (0.0348) (0.0582) (0.0585)
Constant 0.0281 -0.0014 -0.0511∗∗ -0.0260 -0.0308 -0.0372

(0.0317) (0.0226) (0.0202) (0.0187) (0.0412) (0.0373)

Weighted ✓ ✓ ✓
Observations 15 15 15 15 15 15
R2 0.4792 0.3995 0.6065 0.5127 0.6623 0.6037
Adjusted R2 0.3372 0.2358 0.4992 0.3798 0.5702 0.4956

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the short-run period of 2004–2007 (columns 1 and 2), a one-unit increase in robot density per hundred

workers is associated with a 4.09 to 3.41 percentage point decline in unionization rates, significant at the 5%

level. In longer periods, such as 2004–2014 and 2004–2021, the estimated effects shrink to approximately 0.64

to 0.79 percentage points but remain statistically significant. These patterns suggest that the immediate

effects of automation were particularly disruptive to organized labor, with the magnitude of the impact

diminishing over longer horizons as industries adapted. However, given potential concerns about reverse

causality and measurement error, these OLS results should be interpreted cautiously.

4.2 IV First-Differences Results

Table 5 presents instrumental variables (IV) estimates of the causal impact of changes in robot density

on changes in industry unionization rates, using changes in European robot stock as an instrument for

U.S. robot adoption. Again, weighted regressions are done based on Populationi,2004 for each industry i.

Across all specifications, the IV results consistently reveal a negative relationship between robot exposure

and unionization outcomes.
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Table 5: IV First-Differences Regressions: ∆ Unionization vs ∆ Robot Density

Dependent variable:

∆ Unionization Rate
2004–07 2004–07 2004–14 2004–14 2004–21 2004–21

(1) (2) (3) (4) (5) (6)

∆ Robot Density -0.0371∗ -0.0338∗ -0.0088∗∗∗ -0.0115∗∗ -0.0098∗∗∗ -0.0102∗∗∗

(0.0169) (0.0161) (0.0026) (0.0037) (0.0028) (0.0032)
∆ Wages (%) -0.0935 -0.0524 0.0213 0.0021 -0.0591 -0.0438

(0.1226) (0.1140) (0.0677) (0.0741) (0.0682) (0.0697)
∆ Population (%) 0.0801 -0.0164 -0.0580∗∗ -0.0455 -0.1680∗∗ -0.1460∗∗

(0.1003) (0.0825) (0.0243) (0.0417) (0.0600) (0.0609)
Constant 0.0267 -0.0015 -0.0466∗ -0.0284 -0.0330 -0.0469

(0.0321) (0.0227) (0.0220) (0.0221) (0.0425) (0.0393)

Weighted ✓ ✓ ✓
First-Stage F 22.931 17.236 12.998 9.006 31.235 31.829
Observations 15 15 15 15 15 15
R2 0.4757 0.3995 0.5452 0.3220 0.6415 0.5695
Adjusted R2 0.3327 0.2357 0.4212 0.1371 0.5437 0.4521

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In the short-run period from 2004 to 2007 (columns 1 and 2), a one-unit increase in robot density per

hundred workers leads to an estimated 3.71 to 3.38 percentage point decline in unionization rates, with

statistical significance at the 10% level. Over the 2004–2014 horizon (columns 3 and 4), the effect size

remains negative, ranging from 0.88 to 1.15 percentage points, significant at the 1% and 5% levels depending

on weighting. In the full 2004–2021 period (columns 5 and 6), the estimates are smaller in magnitude

(approximately 0.99 to 1.01 percentage points), but highly statistically significant. Notably, the IV estimates

are often larger in magnitude than the corresponding OLS estimates. This suggests that the OLS results

may have been biased toward zero, possibly because of measurement error in robot density. In other words,

the OLS approach may have understated the true impact of automation on unionization rates. Instrumental

variables correct for this by isolating exogenous variation, producing larger and more accurate coefficient

estimates. Nevertheless, the persistence of negative and statistically significant effects across all periods

strengthens the evidence for a causal interpretation.

Control variables again exhibit mixed patterns across time horizons. Wage changes are negatively as-

sociated with unionization in early periods but are not consistently statistically significant. Changes in

workforce size flip signs across periods, reflecting longer-term compositional shifts in the industrial base.

Overall, the IV estimates provide robust evidence that increases in robot density causally contributed to

declines in industry-level unionization rates between 2004 and 2021.
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5 Conclusion

I now return to the Research Question and Hypotheses outlined earlier. Based on the empirical evidence

presented, I reject the null hypothesis (H0) and instead accept the negative alternative hypothesis (HA2).

The analysis finds that increases in robot density are consistently associated with declines in industry-level

unionization rates across multiple time horizons. This result is robust to the use of instrumental variables

techniques that address potential endogeneity concerns.

The initial expectation (HA1) that automation risk might spur greater unionization is not supported by

the data. Rather than galvanizing collective action, increased automation exposure appears to undermine

traditional mechanisms of worker power. A likely explanation is that automation erodes the leverage of

unions by reducing firms’ dependence on human labor, making work stoppages and strikes less costly and

less effective.

5.1 Discussion of the Results

Taken together, the results suggest that automation had a meaningful and statistically significant negative

impact on unionization trends across U.S. industries during the study period (2004-2021). Both OLS and

IV estimates consistently point toward a negative relationship, but the IV specifications, which leverage

exogenous variation from European robot adoption, provide stronger causal evidence that rising robot density

suppressed unionization.

The magnitude of the estimated effects is not only statistically significant but also economically meaning-

ful. Based on the IV estimates, a one-unit increase in robot density—equivalent to one additional operational

robot per hundred workers—causes an approximately 0.9 to 1.2 percentage point decline in that industry’s

unionization rate. Given that baseline unionization rates in many industries were in the range of 5 to 15

percent during the early 2000s, even a 1 percentage point drop represents a substantial erosion of union

power. Although the magnitude of the estimated coefficients declines modestly over longer horizons (likely

reflecting industry adaptation through re-skilling, occupational shifts, and institutional evolution), the per-

sistence of statistically significant effects underscores automation’s durable influence on collective bargaining

structures.

Comparing to Balcázar (2024), who estimates that an increase of one robot per 1,000 workers per year

reduces unionization by approximately 0.07 percentage points, my results are highly consistent. Rescaling

my IV estimates to Balcázar’s units suggests that one additional robot per 1,000 workers would decrease

unionization rates by roughly 0.09 percentage points. The similarity in magnitude and direction across

settings provides strong external validation for the findings, reinforcing the conclusion that automation has
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played a modest but systematic role in weakening organized labor in the U.S. economy during the early

twenty-first century.

5.2 Policy Implications

Beyond their immediate labor market effects, these results raise important policy considerations. If

automation weakens the institutional capacity of workers to organize and advocate collectively, policymakers

may need to consider new forms of labor protections and representation suited to an increasingly automated

economy. Traditional union structures evolved under industrial-era production systems. As technological

change accelerates, modern equivalents must adapt to sustain worker voice in an era of continuous disruption.

Moreover, as robot adoption continues and emerging technologies like artificial intelligence reshape white-

collar occupations, policymakers must recognize that the erosion of union power may not be confined to his-

torically unionized manufacturing sectors. Strengthening collective bargaining rights, supporting alternative

worker organizations, and rethinking social safety nets may be critical components of a labor policy agenda

responsive to technological transformation.

5.3 Limitations

Several limitations of the present study should be acknowledged. First, although the instrumental vari-

ables strategy strengthens causal identification, measurement error in robot counts and employment estimates

may still introduce noise into the estimated effects. Second, the analysis focuses on industry-level averages,

potentially masking important heterogeneity across occupations, demographic groups, or geographic areas

within industries. Third, while the European robot stock instrument plausibly satisfies relevance and ex-

clusion restrictions, its validity ultimately rests on the assumption that European automation trends are

unrelated to unobserved shocks affecting U.S. unionization patterns—a condition that, while defensible, can-

not be fully tested in this analysis. Fourth, the study does not account for other technological, political, or

trade-related forces—such as import exposure from globalization, offshorability of jobs, or broader economic

restructuring—that may simultaneously influence both automation and unionization. Finally, the analysis is

confined to the pre-LLM (large language model) automation era; future waves of technological change may

differ substantially in scope and nature from industrial robotics.

5.4 Future Steps

Building on these findings, future research should pursue several extensions. First, integrating measures

of import competition and offshorability (following Autor, Dorn, and Hanson (2013)) would allow researchers
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to disentangle the effects of automation from broader globalization pressures on unionization. Second, an-

alyzing routine-task intensity (RTI) as an alternative proxy for automation risk may capture subtler labor

market transformations, particularly in industries where robot adoption data is limited. Third, expanding

the analysis to include white-collar occupations—particularly in light of emerging automation risks from

large language models (LLMs)—could reveal whether similar declines in organizational labor power are now

affecting professional sectors. This may require the development of new metrics for automation risk, as

traditional industrial robot measures may fail to capture software-based automation impacts. Finally, future

work could explore cross-sectoral dynamics, investigating whether the erosion of union power in manufactur-

ing spills over into related service industries, and whether certain legal or institutional environments (such as

right-to-work laws) mediate the relationship between automation and collective bargaining. By addressing

these topics, future research can further clarify how technological change reshapes not only the structure of

employment but also the broader institutional landscape governing worker voice and power.
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Appendix A: Declining European Unionization

European Union Densities (Source: CEPR)

Appendix A shows a decline (across all industries) in unionization in Europe from 1980-2011, paralleling U.S.

trends.
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Appendix B: Negative Impact of Robots on Employment

Source: Acemoglu and Restrepo (2020)

Appendix B shows a negative relationship between robot use and private employment found in “Robots and Jobs.”
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Appendix C: Polarization of U.S. Labor Market

Source: Autor and Dorn (2013)

Appendix C shows low and high-skill jobs gaining employment shares in “The Growth of Low-Skill Service Jobs and

the Polarization of the US Labor Market.” I believe many unionized manufacturing jobs may fall in the 20-40th

percentile range.
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Appendix D: Industry Mapping

IND1990 CODE Description IFR Industry

351 Motor vehicles and motor vehicle equipment Automotive

60 All construction Construction

340 Household appliances Electronics

100 Meat products Food

101 Dairy products Food

110 Grain mill products Food

111 Bakery products Food

112 Sugar and confectionery products Food

120 Beverage industries Food

121 Misc. food preparations and kindred products Food

130 Tobacco manufactures Food

271 Iron and steel foundries Metals (Basic)

272 Primary aluminum industries Metals (Basic)

280 Other primary metal industries Metals (Basic)

310 Engines and turbines Metals (Machinery)

311 Farm machinery and equipment Metals (Machinery)

312 Construction and material handling machines Metals (Machinery)

320 Metalworking machinery Metals (Machinery)

321 Office and accounting machines Metals (Machinery)

322 Computers and related equipment Metals (Machinery)

282 Fabricated structural metal products Metals (Products)

290 Screw machine products Metals (Products)

291 Metal forgings and stampings Metals (Products)

292 Ordnance Metals (Products)

300 Miscellaneous fabricated metal products Metals (Products)

40 Metal mining Mining

41 Coal mining Mining

42 Oil and gas extraction Mining

371 Scientific and controlling instruments Other manufacturing

380 Photographic equipment and supplies Other manufacturing
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IND1990 CODE Description IFR Industry

391 Miscellaneous manufacturing industries Other manufacturing

352 Aircraft and parts Other vehicles

360 Ship and boat building and repairing Other vehicles

361 Railroad locomotives and equipment Other vehicles

370 Cycles and miscellaneous transportation equipment Other vehicles

432 Services incidental to transportation Other vehicles

161 Miscellaneous paper and pulp products Paper

162 Paperboard containers and boxes Paper

171 Newspaper publishing and printing Paper

181 Drugs Plastic and chemicals

182 Soaps and cosmetics Plastic and chemicals

191 Agricultural chemicals Plastic and chemicals

192 Industrial and miscellaneous chemicals Plastic and chemicals

200 Petroleum refining Plastic and chemicals

201 Miscellaneous petroleum and coal products Plastic and chemicals

210 Tires and inner tubes Plastic and chemicals

212 Miscellaneous plastics products Plastic and chemicals

842 Elementary and secondary schools Research

850 Colleges and universities Research

851 Vocational schools Research

852 Libraries Research

132 Knitting mills Textiles

141 Carpets and rugs Textiles

150 Miscellaneous textile mill products Textiles

152 Miscellaneous fabricated textile products Textiles

220 Leather tanning and finishing Textiles

230 Logging Wood

232 Wood buildings and mobile homes Wood

241 Miscellaneous wood products Wood

242 Furniture and fixtures Wood

Appendix D is the crosswalk I created between the IPUMS IND1990 industry codes and the 15 IFR industries.
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