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Abstract

This paper is concerned about estimating the inverse g−1 of a monotonic function g which satisfies the restric-

tion E[Y − g(X)|W ] = 0 almost surely where (Y,X,W ) are observable random variables and W is continuously

distributed. As far as I know, consistent estimators are available only if g(X) = E[Y |X] almost surely which

precludes endogenous models. This paper proposes a direct estimator of g−1 when W is not functionally related

to X. The method consists of identifying g−1 as a solution of a nonlinear integral equation whose underlying

operator can be estimated nonparametrically. It is well-known that solving the analog does not deliver consis-

tency due to the ill-posed problem phenomenon, namely the solution is discontinuous in data. To solve this,

the estimator is regularized with the Tikhonov technique. Under weak smoothness conditions, I show that the

estimator is MSE consistent under a global metric. Furthermore, if g−1 is smooth in a certain sense then the

MSE rate of convergence is equal to ℵ[n−r/(2r+1)] where ℵ is a continuous function with ℵ(0) = 0 and r > 1

denotes the number of derivatives assumed for some densities. The analytical expression of ℵ depends on a link

function characterizing the smoothness of g−1. This result holds for a broad class of link functions belonging to

a suitable space.
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1 Introduction

This article considers the model

E[Y − g(X)|W ] = 0 (1)

almost surely, where Y is a scalar variable, (X,W ) is bivariate continuously distributed, and g is some unknown

function strictly monotonic on the support of X. Without loss of generality, g shall be increasing. The multivariate

extension (i.e dim(X,W ) > 2) is delineated in Section 4. It is assumed that W is excluded from X. This paper

presents a method to estimate g−1 in one step from data. Here are some examples where this methodology applies:

Example 1: Endogenous nonparametric demand-supply regression.

Y = g(X) + U , E[U |W ] = 0,

where Y denotes the equilibrium quantity, U is an unobservable variable, and g(X) represents the quantity de-

manded (respectively supplied) at price X. Standard economic theory dictates that g is strictly decreasing (respec-

tively increasing). Economists are interested in estimating g−1 which represents the inverse demand (respectively

supply) function. The market clearing forces render U correlated with X. The availability of some external variable

W exogenous in the sense of E[U |W ] = 0 offers a possible identifying relationship for g−1 as discussed in Section 2.

Example 2: Endogenous nonseparable regression.

X = M(Z,U), E[U |W ] = 0.

where (X,Z,W ) is observable, and M(z, .) is strictly increasing in its second argument for all z in the support

of Z. The unobservable variable U has an absolutely continuous distribution function, and a symmetrical density

with respect to Lebesgue measure conditional on W . Because M(Z,U) = M [Z,Γ−1 ◦ Γ(U)] for any invertible Γ,

identification of M is only possible up to an increasing function (Matzkin 2003). A convenient choice for this paper
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is to select Γ to be some increasing odd function so that one may assume U has support [−1, 1]1. This model can

be re-framed as in (1). To understand this duality, write M−1(z, .) the inverse of M(z, .) which yields

E{E[M−1(Z,X)|Z,W ]|W} = 0.

Since M(Z, .) is the inverse of M−1(Z, .), one can estimate M using the multivariate method described in Section

4. Matzkin (2004) developed an estimator of M assuming that U is independent with Z while Chernozhukov,

Gagliardini and Scaillet (2012) and Chernozhukov, Imbens, Newey (2007) proposed estimators of M assuming U

is independent with W 2. The method of this paper can accommodate the case where Z and U are correlated, and

allows the distribution of U |W to be heteroscedastic3.

Example 3: Weighted derivatives estimation for the endogenous nonparametric regression with

unknown transformation of latent equation.

Y = T [g(X) + U ], E[U |W ] = 0.

where (Y,X,W ) is observable, U is an unobservable error, T is strictly increasing and absolutely continuous, and

g is some unknown function. This models notably encompasses the nonparametric transformation of Box and

Cox (1964), proportional hazard models, and additive hazard models (see Horowitz 1996). The above model was

examined in Jacho-Chavez-Linton Lewebel (2010) when X is uncorrelated with U . Also, Chiappori et al (2014)

proposed an estimation method if X contains a ’special’ regressor which is independent with U conditional on the

remaining components.

1For instance, pick Γ to be some continuously differentiable increasing odd function onto [−1, 1] with a derivative supported on a

compact interval inside of which the density of U is assumed bounded away from the origin. The normalized model is Y = M̃(Z, Ũ)

where Ũ ≡ Γ(U) and M̃(Z, .) ≡M [Z,Γ−1(.)]. This is convenient because the methodology of Section 4 requires Ũ to be supported on

a known compact interval.
2If U ⊥ W , the density of U |W does not need to be symmetrical because one can select Γ to be the CDF of U which results, after

normalization, in E{E[M−1(Z,X)|Z,W ]|W} = 1/2. If this is the case, the estimator described in this paper in effect conducts an

extra smoothing step over the identifying relationship examined in Chernozhukov, Imbens, Newey (2007)
3Furthermore, M is estimated as a function of both arguments for components of Z which are not redundant in W (see Theorem

1-2bis). In the former papers, M(z, u) is estimated for each fixed u.
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Without loss of generality suppose X is a scalar variable with support [0, 1]. Let π(x) denote a positive weight func-

tion with compact support S ⊆ [0, 1] vanishing on its boundaries. Suppose g and π are continuously differentiable

on S. Researchers are often interested in estimating the weighted derivative parameter δ ≡
∫
S
π(x){∇g(x)}dx. This

latter can be estimated with the method described in this paper. To appreciate this, introduce F (u, x) ≡ T [g(x)+u]

and adopt the normalization
∫
∇T (z)dz = 1. Write D(x, xo) ≡

∫
F (u, x) − F (u, xo)du for any (x, xo) in [0, 1]2.

Now observe that the Fubini’s theorem and integrating by parts yield

∫
[0,1]
{∇π(x)}D(x, xo)dx ≡ −

∫
[0,1]

π(x){∇g(x)}dx.

Hence, δ = −
∫

[0,1]2
{∇π(x)}D(x, xo)dxdxo. It follows that δ can be estimated consistently forming the analog

replacing F (u, x) by the estimator constructed in a first step as explained in example 2.

If g is known up to some finite dimensional parameter one can estimate g−1 consistently using GMM method

(Hansen 1982) under mild smoothness conditions. If g does not belong to the parametric family in question, this

estimator is inconsistent. A limitation of this parametric approach is that it is solely grounded in analytical easiness

because economic theory rarely imposes more than shape restrictions (i.e. monotonicity, concavity-convexity). If

g is not assumed to be known up to some finite dimensional parameter, a natural approach for estimating g−1

consists of using the generalized inverse of some consistent nonparametric estimator. The consistent estimation

of g can be achieved using either the sieves method (Ai and Chen 2003) or the regularization method (Hall and

Horowitz 2005, Darolles, Fan, Florens, and Renault 2011). However, inverting these estimators in a second step

does not permit to derive a rate of convergence given the metrics available for the above estimators. This paper

solves this problem by proposing an instrumental nonparametric estimator of g−1 whose rate of convergence is

established. Furthermore, the estimator is not produced by inverting a preliminary estimator of g but is directly

computed from data.

As explained in section 2, g−1 solves a nonlinear integral equation Tθ = Q where the operator T and the function

Q are known up to some distributions. T and Q can be estimated from data with nonparametric methods. This

paper uses the kernel method although other approaches are possible. Solving the analog does not imply consistency

because the solution, viewed as a mapping from the space of distributions into the parameter space, is not continuous

in data (Engl, Kunisch and Neubauer 1989). Technically, the ill-posedness arises owing to the fact that the Frechet
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derivative of the underlying operator has a discontinuous inverse. Unlike the case where the function of interest

is known up to some finite-dimensional parameter (see Hansen 1982, Judge et al 1980), this lack of continuity is

neither data-related nor an identification problem. It is simply inherent in the fact that the parameter space does

not have a finite dimension so that the estimation losses on the sequence of coefficients characterizing the function

are cumulated ad infinity.

To overcome this challenge, one may regularize the solution, that is modify it into a continuous mapping. Various

regularization schemes are available but this paper applies the Tikhonov method. This technique achieves regular-

ization by penalizing the objective when forming the analog. This latter feature is convenient because it removes the

need to work from the first-order conditions, a theoretical challenge due to the ill-posedness previously mentioned.

If some sequence of Fourier coefficients representing g−1 decays sufficiently fast, and if certain densities admit r > 1

derivatives then the proposed estimator say θ̂ satisfies E||θ̂ − g−1||2H = O{ℵ[n−r/(2r+1)]} where ℵ is an increasing

continuous function such that ℵ(0) = 0, and ||.||H is a global metric. The exact analytical expression of ℵ hinges on

the type of source conditions, namely on a link function characterizing the speed of decay exhibited by the Fourier

coefficients. This paper uses generic source conditions in the sense that the link function is only assumed to belong

to a suitable space. This is important because rate-optimality conclusions depend on the link function. The rate

of estimation established in this paper is slower than that achieved for estimating T and Q. This deceleration is

inevitable in order to remove the bias introduced by the regularization process. The same phenomenon takes place

when estimating g (Hall and Horowitz 2005, Carrasco and Florens 2010) with the Tikhonov regularization method.

This MSE rate of convergence derived in Theorem 2-bis is the fastest one possible under the assumptions imposed

in this paper (Sergei, Pereverzev and Ramlau 2007).

The nonlinear Tikhonov regularization technique has already been employed in econometrics for the nonparametric

endogenous quantile regression model (Horowitz and Lee 2007) and the endogenous non-additive regression model

(Chernozhukov, Gagliardini and Scaillet 2012). In fact, the structure of the integral equation identifying g−1

shares similarities with that examined in these two papers. Estimating the inverse of a monotonic regression

function E[Y |X] (i.e. when W = X) has been examined in statistics. These include the inverse kernel method

(Dette et al. 2005), and the two-stage hybrid method (Tang at al. 2011). As far as I know, there is no method

available to estimate the inverse when g(X) does not coincide with E[Y |X]. This latter fact frequently arises in
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economics due to simultaneousness of data generating processes or omitted variables.

Regularizing is not the only way one can overcome the ill-posed problem. Another strategy consists of working

on a compact parameter space. The resulting estimator will not be subject to ill-posedness because the solution

is continuous in data by the Arzela’s theorem (see Gallant and Nychka 1987, Engl and Kugler 2005, Newey and

Powell 2003, Ai and Chen 2003). The main difference with the regularization method deals with the burden of

assumptions concerning the function to estimate. With the regularization method, the burden is on the speed of

decay of the sequence of Fourier coefficients characterizing the function. On the other hand, the ’compactification’

approach hinges on the existence of a sufficient large number of pointwise derivatives for the function.

The rest of the paper is organized as follows. Section 2 provides a summary of the estimation procedure. Section

3 presents the assumptions and results. Section 4 extends the method for the multivariate case. Finally, Section 5

presents a Monte Carlo experiment. All the proofs are located in the appendix located in the back of the paper.

I shall introduce some notations used in the subsequent sections. For any integer c ≥ 1, L2[0, 1]c denotes the

space of square integrable functions on [0, 1]c with respect to Lebesgue measure. For any f and g belonging to

L2[0, 1]c write < f, g >≡
∫

[0,1]c
f(x)g(x)dx and ||f ||[0,1]c ≡

√
< f, f >. For an integer α ≥ 0, write ∇(α)f as the

αth weak derivatives whenever the latter exist. To make notations less cumbersome, ∇(1)f will be simply written

as ∇f . Furthermore, for any integer s ≥ 1, write Hs[0, 1]c = {f ∈ L2[0, 1]c : ∇αf ∈ L2[0, 1]c, |α| ≤ s} viewed

as a completion. Any θ belonging to Hs[0, 1]c with 2s > c shall be assumed continuous without loss of generality

because one can always redefine θ a.e. by

θ(x1, ...., xc) ≡ θ(0, ..., 0) +

∫ x1

0

∇1f(z, x2, ...xc)dz +

∫ x2

0

∇2f(0, z, x3..., xc)dz + ....+

∫ xc

0

∇cf(0, ..., 0, z)dz.

To make notations less cumbersome, I shall write < f, g >1=< f, g > +
∑
|α|=1 < ∇(α)f,∇(α)g > and ||f ||1 ≡

√
< f, f >1. Moreover, H1[0, 1]c will be simply written as H[0, 1]c. The symbol ∂[0, 1]c denotes the subset of [0, 1]c

containing points (x1, ...xc) such that xi ∈ {0, 1} for some i = 1...c. Given a strictly positive deterministic sequence

{an}n≥1 and a deterministic sequence {cn}n≥1, the symbol cn/an � 1 means that cn/an is bounded away from 0

and infinity.
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2 Summary of Estimation Procedure

This section treats the case where X and W are scalar variables. It is assumed that X is supported on a compact

interval. Furthermore, I shall suppose for simplicity (g(X),W ) ∈ [0, 1]2. If g(X) has a bounded support, using the

unit interval may be assumed without loss of generality4. The methodology can be adjusted if the support of g(X)

is unbounded as discussed in Section 3. Moreover, write ||θ||2H ≡ ||θ||2 + ||∇θ||2, and assume θ0 ≡ g−1 belongs to

H = {θ ∈ H[0, 1] : ||θ||2H ≤M} where M <∞ is a known real constant.

let {Yi, Xi,Wi}ni=1 denote some i.i.d. sequence of observations. It is assumed that the distribution of (X,W ) is

absolutely continuous with respect to Lebesgue measure. Furthermore, (Y,W ) is assumed to have a density J(y, w)

with respect to some sigma-finite product measure µ× ` where ` denotes the Lebesgue measure. Write fXW as the

density of (X,W ), and f as the density of W . Furthermore, let F [.|w] denote the cumulative distribution function

(CDF) of X|W = w.

To appreciate the method observe that (1) implies

E[g(X)|W = w] = E[Y |W = w] (2)

Furthermore, the Fubini’s Theorem yields

E[g(X)|W = w] =

∫ 1

0

P [g(X) > t|W = w]dt = 1−
∫

[0,1]

F [g−1(t)|w]dt. (3)

Let τ denote a weight function with compact support I ⊆ [0, 1]. The presence of a weight function is introduced

for technical reasons which will made more precise in Section 3. Additionally, a weight function can improve the

finite-sample properties of the estimator when the density of W is too small close to the boundaries. Furthermore,

define

Ω[x,w] ≡
∫ x

−∞
fXW (u,w)τ(w)du, (4)

4If g(X) is bounded (wp 1) use the transformed model (αY + β, αg + β) where (α, β) are real constants so that g̃(X) ≡ αg(X) + β

has support in [0, 1]. Since X has support say [a, b], one may redefine the inverse if needed putting g̃−1 = a if t < g̃(a) and g̃−1 = b if

t > g̃(b).
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and

M(w) ≡
∫
yJ(y, w)dµ(y). (5)

Write Q(w) ≡ τ(w){f(w)−M(w)}. It follows from (2)-(5) that θ0 solves the following nonlinear integral equation

(Tθ)(w) = Q(w) (6)

where,

(Tθ)(w) ≡
∫

[0,1]

Ω[θ(t), w]dt.

A prerequisite to reach consistency is the uniqueness of a solution in (6) over H. As of today, only results for

local identification are available (Chen, Chernozhukov, Lee and Newey 2011)5. A necessary (albeit not sufficient)

condition for global identification is that X and W exhibit statistical dependency. To understand this point, observe

that if X and W are independent then T transforms any function into τf up to a multiplicative scalar. Thus,

I assume identification in the sense of ||.||H . Sections 3-4 discuss particular models where identification can be

achieved using a monotonicity constraint on the parameter space.

To highlight the estimation challenge, suppose T admits a Frechet derivative at θ0 say T . That is there exists a

linear bounded operator T : H[0, 1]→ L2[0, 1] satisfying for all θ ∈ H

T (θ) = T (θ0) + T (θ − θ0) + o(||θ − θ0||H).

Write S(x,w) ≡ fXW (x,w)τ(w). Under mild smoothness conditions given in Section 3 this derivative exists and

has the form

(T ξ)(w) =

∫
[0,1]

ξ(t)S[θ0(t), w]dt.

5That is, identification is met over a restricted space of functions ’close enough’ to θ0 in the sense of the Hilbert metric. What consti-

tutes ’close enough’ is determined by the magnitude of L = supx,w|∂2F (x|w)/∂x| assuming the latter exists, see Chen, Chernozhukov,

Lee and Newey (2011), Proposition 5. It is not clear how this result can be implemented since L is unknown.
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Introduce T ∗ : L2[0, 1]→ H[0, 1] the adjoint of T given by

(T ∗ξ)(t) = D−1{
∫

[0,1]

ξ(w)S[θ0(t), w]dw}.

where D : {u ∈ H2[0, 1] : ∇u(0) = ∇u(1) = 0} → L2[0, 1] is defined by Du ≡ u−∇2u. Under standard integrability

conditions given in Section 3, T ∗T is compact, and therefore admits a spectral system (Kress 1999, Theorem 15.16)

say {λ2
j , φj , j ≥ 1} such that

(T ∗T )φj = λ2
jφj , j ≥ 1.

Rearrange the sequence according to λ2
1 ≥ λ2

2 ≥ ..., repeating an eigenvalue by its order of multiplicity if needed.

Technically, the ill-posed phenomenon described in Section 1 arises because λj → 0 as j → ∞ rendering the

mapping (T ∗T )−1 discontinuous. In that case, forming the sample analog of (6) does not yield consistency since

the estimation loss depends on the mapping in question applied on the data estimation error. The Tikhonov method

consists of modifying (T ∗T )−1 into a new operator which is continuous.

To describe the construction of the estimator, write I(E) = 1 if event E is true and I(E) = 0 otherwise. Let K

denote a kernel function satisfying notably

∫
K(t)dt = 1,

∫
tuK(t)dt = 0 for u = 1, ..., r − 1

∫
trK(t)dt 6= 0,

for some positive integer r > 1. The estimator of T is given by

(T̂ θ)(w) ≡
∫

[0,1]

Ω̂[θ(t), w]dt

with,

Ω̂[x,w] ≡ 1

nh

n∑
i=1

τ(Wi)I(Xi ≤ x)K(
Wi − w

h
),

where h is a deterministic strictly positive sequence satisfying h→ 0 as n→∞. The estimator of Q is given by

Q̂(w) ≡ 1

nh

n∑
i=1

τ(Wi)(1− Yi)K(
Wi − w

h
).

9



The Tikhonov estimator θ̂ solves the following optimization problem,

Minθ∈H

∫
[0,1]

|(T̂ θ)(w)− Q̂(w)|2dw + an{
∫

[0,1]

|θ(t)|2dt+

∫
[0,1]

|∇θ(t)|2dt}

where an is a strictly positive deterministic sequence of real numbers meeting an → 0 as n→∞.

To appreciate the presence of the penalty term in the objective, one may write heuristically from the first-order

conditions θ̂ − θ0 ≈ (T ∗T + an)−1(∆) where ∆ contains the sources of error from estimating T and Q. Hence,

adding a penalty term regularizes the solution since (T ∗T + an)−1 is now bounded.

3 Assumptions

In the ensuing part of the paper, r denotes a positive integer with r > 1.

Assumption 1: {Yi, Xi,Wi}ni=1 is an i.i.d. sequence of observations from (Y,X,W ) where (g(X),W ) ∈ [0, 1]2,

and E[Y − g(X)|W ] = 0 almost surely.

Assumption 2: g is strictly increasing and continuous (as an extension) on the support of X which is a compact

interval. Furthermore, θ0 belongs to H as defined in section 2.

Assumption 3 : τ(w) is a continuous function on the real line with compact support I ⊆ [0, 1]. The distribution

of (X,W ) is absolutely continuous with respect to Lebesgue measure, and (Y,W ) has density J(y, w) with respect

to some sigma-finite product measure µ × ` where ` denotes Lebesgue measure. There is a real constant C < ∞

such that, f(w)τ(w), and M(w)τ(w) are r-times continuously differentiable with all derivatives bounded in absolute

value by C. Furthermore, Ω(x,w) has two continuous partial derivatives with respect to its first argument and

r continuous partial derivatives with respect to its second argument. Moreover,
∫
|τ(w)y|2J(y, w)dµ(y), and the

derivatives of Ω are bounded in absolute value by C.
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Comments: Assumption 1 may be relaxed when g(X) is only bounded from below6. If g(X) is fully supported,

the inverse is increasing on the real line which requires notably adjusting the parameter space to insure square

integrability is well-defined, and strengthening the regularity conditions7. Assumption 2 makes the domain a

subspace of the Sobolev space H[0, 1] which is an Hilbert space equipped with inner product <,>1. This choice

meets the spectral theory laid out in Bissantz, Hohage and Munk (2004) which requires identification over a closed

convex subspace of an Hilbert space. Furthermore, using a Sobolev space as opposed to L2[0, 1] is judicious in

that it permits, under certain conditions, analyzing identification using known results as discussed subsequently.

Assumption 2 requires mild smoothness conditions over the parameter of interest. Notably, this can accommodate

the case where θ0 is not differentiable everywhere. Assumption 2 presumes some knowledge about the norm of θ0

and its derivative. In practice, this is not too restrictive since one can choose M arbitrary large. Assumption 3

contains notably standard smoothness conditions which allow to estimate the operator with the kernel method. The

theoretical motivation for using a weight function τ is to remedy to technical difficulties due to the ”edge-effect”

which takes place if the density function of W is discontinuous on the boundaries of its support. An alternative if

the derivatives are not continuous is to use boundary kernels provided in Hall and Horowitz (2005).

Assumption 4: For any θ in H, ||Tθ − Tθ0|| = 0⇒ ||θ − θ0||H = 0.

Assumption 5: K is supported on [−1, 1], symmetrical around the origin, and continuously differentiable. Fur-

thermore,

∫
K(t)dt = 1,

∫
tuK(t)dt = 0 for u = 1, ..., r − 1 and

∫
trK(t)dt 6= 0.

Assumption 6: (Writing δn ≡ h2r + 1/nh). (a) an is a strictly positive deterministic sequence of real numbers

satisfying lim an = 0 as n→∞. (b) lim δn/an = 0 as n→∞.

6This stems from the fact that
∫
(0,∞) P [g(X) > t]dt =

∫
(0,1) P [g(X) > χ(t)]∇χ(t)dt for a suitable increasing function χ from (0, 1)

into (0,∞) meeting the smoothness conditions of Fremlin (2010) Theorem 263D. The methodology is identical if one re-define Ω[θ(t), w]

with {τ(w)f(w)− Ω[θ(t), w]}∇χ(t) and Q with τ(w)M(w).
7In this case, modify T replacing (3) by E[g(X)|W = w] =

∫
1− F [θ0(t)|w]− F [θ0(−t)|w]dt assuming E|g(X)| exists. Then, work

on a weighted Sobolev space H = {θ : R→ R : ||θ||2π,H ≤M} where ||θ||2π,H ≡
∫
π(t)|θ(t)|2dt+

∫
π(t)|∇θ(t)|2dt, and π > 0 is a weight

function with vanishing tails.
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Comments: Assumption 4 assumes global identification. There are some models where identification can be

achieved by restricting the parameter space to contain increasing functions assuming that the distribution of

(X,W ) is complete wrt X (Severini and Tripathi 2006) as proven in Lemma ID. Completeness imposes a certain

form of functional correlation which will be met, for instance, with the exponential family of distributions (see

Newey Powell 2003, Ai and Chen 2003). General class of nonparametric complete distributions are furnished in

Andrews (2011). Assumption 5 is met with smooth compactly supported kernels. Using a kernel with a non-

compact support is also possible provided some mild integrability conditions are satisfied. Assumption 6 demands

the researcher to let collapse the regularization sequence at a rate less rapid than the MSE rate achieved by the

nonparametric estimator of T . This is common with the ill-posed literature because a too rapid decay of the

regularization sequence would impose dealing with the ill-posed problem again.

Theorem 1 (Convergence)

Let θ̂ ≡ Argminθ∈H||T̂ θ − Q̂||2 + an||θ||2H . Under assumptions 1 through 6,

lim E||θ̂ − θ0||2H = 0 as n→∞.

Furthermore,

lim Esup{|θ̂(t)− θ0(t)|2 : t ∈ [0, 1]} = 0 as n→∞.

Comments: Theorem 1 implies lim E||θ̂ − θ||2 = 0. In practice, the estimator will be computed using a finite-

dimensional space dense for H in the sense of the metric ||.||1. A truncated series using some known orthonormal

basis of H[0, 1] such as Chebyshev’s polynomials (Gagliardini and Scaillet 2012) is the easiest choice. Apart from

Neubaeur (1987), little formal results are available to understand the numerical effect, in a finite sample, of using

a space of large dimension albeit finite for computing a Tikhonov estimator.

Under the Assumptions of Theorem 1, the Frechet derivative of T at θ0 exists and is given as in Section 2.

Furthermore,

∫
[0,1]2

|S[θ0(t), w]|2dtdw <∞.
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This last integrability makes T ∗T compact which renders the estimation problem ill-posed since the spectrum of

eigenvalues {λ2
j}∞j=1 contains 0 as a limit point. Under these circumstances, one cannot derive a rate of convergence

unless further smoothness conditions are imposed. These are given next. For any Ψ belonging to H introduce

(DTΨ)(ξ)(w) ≡
∫

[0,1]

ξ(t)S[Ψ(t), w]dt.

Assumption 7: (a) There is a finite real constant L > 0 such that for any (Ψ, ξ) ∈ H2,

||T (ξ)− T (Ψ)−DTΨ(ξ −Ψ)|| ≤ L||ξ −Ψ||2.

(b) T is non singular38. .

Comments: Write B ≡ supx,w|∂S(x,w)/∂x|. This latter quantity exists under Assumption 3. It is not too

difficult to show that Assumption 7(a) is met for any L > B/2. However, the existence of B is sufficient but not

necessary for Assumption 7(a) to hold. Assumption 7(b) assumes that T1 is injective which prevents the degenerate

case where 0 is an eigenvalue. This extends the full rank condition on the Jacobian necessary for conducting the

asymptotic analysis with the GMM method. This injectivity condition fails if X and W are independent9.

Write φj the eigenfunction of T ∗T with associated eigenvalue λ2
j for j ≥ 1. Under Assumption 7, {φj}∞j=1 forms a

complete orthonormal basis of H[0, 1]. Hence, θ0 has the Fourier representation

θ0 =

∞∑
j=1

bjφj ,

where

bj ≡
∫

[0,1]

θ0(t)φj(t)dt+

∫
[0,1]

∇θ0(t)∇φj(t)dt, j ≥ 1,

and

8This latter is met if ||
∫
[0,1] ξ(x)S[θ0(x), w]dx|| = 0 implies ||ξ|| = 0.

9If this is the case, T maps any function ξ into < ξ, f0 > τ(w)f(w) where f0 is the marginal density of X evaluated at θ0(x).

Under these circumstances, one can create a function ||ξ|| 6= 0 meeting ||T ξ|| = 0 violating Assumption 7(b). For instance, pick

ξ = ϕ− [< ϕ, f0 > / < µ, f0 >] where µ(x) = 1[0 < x < 1] and ||ϕ|| 6= 0. Since ||ϕ||2H ≥ ||ϕ||
2 assumption 7(b) is violated.
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∞∑
j=1

|bj |2 <∞.

Assumption 8:

√√√√ ∞∑
j=1

|bj |2
|λj |2

< 1/3L.

Furthermore, there are a real constant σ > λ2
1 and a known real-valued function ϕ such that ϕ(0) = 0, ϕ is

continuous increasing on [0, σ), and

∞∑
j=1

|bj |2

ϕ(|λj |2)2
<∞.

Moreover, ϕ(t)/
√
t is non-decreasing and there is a real constant Co > 0 such that on (0, σ],

Cot ≤ ϕ(t)Ξ(t),

where Ξ(t) ≡ inf{t≤λ≤σ}{λ/ϕ(λ)}.

Assumption 9: (Write Λ(t) ≡ ϕ(t)
√
t) h ∝ n−1/(2r+1), and an � Λ−1(

√
δn).

Comments: Assumption 8 is a source condition which demands eigenfunctions having sufficient ’predictive power’

to approximate θ0. Because the regularization process, in effect, estimates an approximation of θ0, it introduces a

deterministic bias. A prerequisite for the bias to vanish at a tractable rate is that the Fourier coefficients exhibit

a sufficiently rapid rate of decline in the the sense of the first part of Assumption 8. The more severe the rate

of decay of the eigenvalues (i.e. the more ”ill-posed” the problem), the less complex θ0 must be in the sense of

having θ0 '
∑J
j=1 bjφj an accurate approximation for some small positive integer J . Also the smoother T (i.e. the

smaller L in Assumption 7), the more complex θ0 is allowed to be. This highlights the fact that when T is very

smooth, the bound 1/3L is not likely to be binding. However, if this is not the case then a sharp decline in Fourier

coefficients is required. The second part of Assumption 8 introduces extra smoothness conditions which accelerate

the rate of collapse of the regularization bias. This is true provided the regularization sequence is chosen according
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to Assumption 9. Hence, taking advantage of this extra smoothness is only possible with an a priori-knowledge

concerning ϕ. The last part of Assumption 8 places weak restrictions over the rate of decay of the Fourier coefficients.

Assumption 8 is very general because it imposes only ’shape’ restrictions over the link function ϕ. As far as I know,

there is no result available to handle the ’rough case’ when ϕ(t)/
√
t is decreasing10. Assumption 9 delivers the

rate-optimal regularization sequence which balances the regularization bias of size O(ϕ(an)) and the estimation

error incurred on the regularized version having size O(
√
δn/an). Selecting h ∝ n−1/(2r+1) yields the optimal MSE

rate of estimation for the operator, namely δn ∝ n−2r/(2r+1). To assess the plausibility of Assumption 8, consider

the polynomial link ϕ(t) = tu for u ≥ 1/2. Special cases of polynomial source conditions have been examined in

Hall-Horowitz (2005) and Horowitz-Lee (2009). Then, Assumption 8 is met for instance if ||(T ∗1 T1)−uθ0|| < 1/3L

for some u ∈ [1/2, 1] (the first part of Assumption 8 corresponds to u = 1/2).

Theorem 2 (Rate of Convergence)

Under the assumptions of Theorem 1 and assumptions 7 through 9,

E||θ̂ − θ0||2H = O{ℵ(n−r/(2r+1))},

where ℵ(t) ≡ {ϕ[Λ−1(t)]}2. Furthermore,

Esup{|θ̂(t)− θ0(t)|2 : t ∈ [0, 1]} = O{ℵ(n−r/(2r+1))},

Comments: Theorem 2 implies E||θ̂ − θ0||2 = O{ℵ(n−r/(2r+1))}. As established in Bissantz, Hohage and Munk

(2004), selecting an �
√
δn yields the MSE rate

√
δn which is no longer optimal whenever ϕ(t)/

√
t is strictly

increasing. To derive a rate of convergence using Theorem 2, one must choose the link function ϕ. Consider for

instance the polynomial link case previously discussed. For the polynomial case, Assumption 9 is met with an �

δ
1/(2u+1)
n . This yields a MSE rate δ

2u/(2u+1)
n . It follows from Theorem 2 that ||θ̂ − θ0|| = Op(n

−2ur/(2r+1)(2u+1)).

Under the minimal smoothness conditions for the functions of Assumption 3, the rate is n−4u/5(2u+1). Thus, under

the minimal assumptions of this paper, the rate for the polynomial case ranges from n−1/5 to n−4/15 depending

on the link smoothness. However, if the functions of Assumption 3 admit enough derivatives, a researcher can

construct an estimator converging at a rate close to n−1/4 if u = 1/2 and close to n−1/3 if u = 1.

10Some results are provided in Tautenhahn and Jin (2003) in the context of polynomial source conditions (i.e. if 0 < u < 1/2) where

T is known suggesting that only further very restrictive smoothness conditions on the Frechet derivative can overcome the ’rough case’.
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4 Multivariate extension

This section treats the more general model

E[Y − g(X, Z̃)|W̃ ] = 0 (7)

almost surely, where X is a scalar variable, Z̃ = (Z, V ) is 1 by p = pz + pv vector, and W̃ = (V,W ) is 1 by

pv + l vector with l ≥ c ≡ pz + 1. It is assumed that (g(X,Z, V ), Z, V,W ) has support [0, 1]1+p+l without loss of

generality11. The unknown function g(x, z̃) is strictly monotonic with respect to its first argument for all z̃ in [0, 1]p.

For the sake of clarity, g is taken to be increasing. The goal is to estimate, for each fixed v, θv(t, z) ≡ g−1(t, z, v),

which gives the inverse of g as a function of x for any given z. Write ||θ||2H,s ≡
∑
|α|≤s ||∇(α)θ||2[0,1]c , and assume

θv, for each fixed v, belongs to H = {θ ∈ Hs[0, 1]c : ||θ||2H,s ≤M} for some integer s > 0 where M <∞ is a known

real constant.

Let {Yi, Xi, Zi, Vi,Wi}ni=1 denote some i.i.d. sequence of observations. It is assumed that the distribution of

(X,Z, V,W ) is absolutely continuous with respect to Lebesgue measure. Furthermore, (Y, V,W ) is assumed to have

a density J(y, v, w) with respect to some sigma-finite product measure µ× ` where ` denotes the Lebesgue measure

in [0, 1]pv+l. Write fXZVW as the density of (X,Z, V,W ). Let f(.|v, w) denote the density of Z|V = v,W = w,

and fVW the density of (V,W ). Write F [.|z, v, w] as the CDF of X|Z = z, V = v,W = w.

To describe this multivariate extension, observe that (7) can be re-written with iterated expectations as

∫
[0,1]pz

E[g(X,Z, V )|Z = z, V = v,W = w]f(z|v, w)dz = E[Y |V = v,W = w]. (8)

Furthermore, the Fubini’s Theorem yields

E[g(X,Z, V )|Z = z, V = v,W = w] =

∫ 1

0

P [g(X,Z, V ) > t|Z = z, V = v,W = w]dt = 1−
∫

[0,1]

F [g−1(t, z, v)|z, v, w]dt.

(9)

11For example 2 discussed in Section 1, g(X,Z, V ) will satisfy this condition using the transformed model having Y = 1/2 and

g = H[M−1] where H(t) ≡ (t+ 1)/2.
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Let τ denote a weight function with compact support I ⊆ [0, 1]l. The weight function is introduced for similar

reasons as those explained in Section 3. Now define

Ω[x, z, v, w] ≡
∫ x

−∞
fXZVW (u, z, v, w)τ(w)du, (10)

and

M(v, w) ≡
∫
yJ(y, v, w)dµ(y). (11)

Suppose Ω[x, z, v, w] and Qv(w) ≡ τ(w){fVW (v, w) −M(v, w)} exist for each fixed v in [0, 1]pv . It follows from

(7)-(11) that θv(t, z) solves the following integral equation

(Tvθ)(w) = Qv(w) (12)

where,

(Tvθ)(w) ≡
∫

[0,1]c
Ω[θ(t, z), z, v, w]dtdz.

Identification of a unique root for (12) over H will be achieved if (X,Z) and W are sufficiently correlated in the

sense of Assumption 4bis.

Under standard integrability conditions given subsequently, the ill-posed problem described in section 3 is still

present requiring the usage of the Tikhonov method when solving the analog of (12).

To describe the construction of the estimator, let r denote some integer with r > 1 and introduce Kr={f : R −→ R,

f continuous, f supported on [−1, 1], f symmetrical,
∫
f(t)dt = 1,

∫
tuf(t)dt = 0 for u = 1, ..., r−1

∫
trf(t)dt 6= 0}.

Furthermore for any integer p ≥ 1 define Kp,r ={κ : Rp → R, κ(t1, ..., tp) ≡
∏p
j=1 k(tj), k ∈ Kr }.

The estimator of Tv is given by

(T̂vθ)(w) ≡
∫

[0,1]c
Ω̂[θ(t, z), z, v, w]dtdz
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with,

Ω̂[x, z, v, w] ≡ 1

nhpzz h
pv
v hlw

n∑
i=1

τ(Wi)I(Xi ≤ x)Kz(
Zi − z
hz

)Kv(
Vi − v
hv

)Kw(
Wi − w
hw

),

where Kz belongs to Kp,r, Kv belongs to Kpv,r, Kw belongs to Kl,r while hz, hv, and hw are deterministic strictly

positive sequences satisfying Max(hz, hv, hw)→ 0 as n→∞. The estimator of Qv is given by

Q̂v(w) ≡ 1

nhpvv hlw

n∑
i=1

τ(Wi)(1− Yi)Kv(
Vi − v
hv

)K(
Wi − w
hw

).

The Tikhonov estimator θ̂v(t, z) solves the following optimization problem

Minθ∈H

∫
[0,1]l
|(T̂vθ)(w)− Q̂v(w)|2dw + an

∑
|α|≤s

∫
[0,1]c

|∇(α)θ(t, z)|2dtdz,

where an is a strictly positive deterministic sequence of real numbers meeting an → 0 as n → ∞. The regularity

conditions for this multivariate setting are given next.

5 Assumptions

Assumption 1 bis: {Yi, Xi, Zi, Vi,Wi}ni=1 is an i.i.d. sequence of observations from (Y,X,Z, V,W ). Furthermore,

(g(X,Z, V ), Z, V,W ) ∈ [0, 1]1+pz+pv+l and l ≥ c ≡ pz + 1. Moreover, E[Y − g(X,Z, V )|V = v,W ] = 0 almost

surely for each v in [0, 1]pv .

Assumption 2 bis: For all (z, v) in [0, 1]p, g(x, z, v) is strictly increasing and continuous (as an extension) on

the support of X which is a compact interval. Furthermore, θv(t, z) belongs to H as defined in section 4 for each v

in [0, 1]pv .

Assumption 3 bis: τ(w) is a continuous function on Rl with compact support I ⊆ [0, 1]l. The distribution

of (X,Z, V,W ) is absolutely continuous with respect to Lebesgue measure, and (Y, V,W ) has density J(y, v, w)

with respect to some sigma-finite product measure µ × ` where ` denotes Lebesgue measure in [0, 1]pv+l. There

is a real constant C < ∞ such that, all partial derivatives of order r of fVW (v, w)τ(w), and M(v, w)τ(w) are

continuous and bounded in absolute value by C. Furthermore, Ω[x, z, v, w] has two continuous partial derivatives

with respect to its first argument and r continuous partial derivatives with respect to its last three arguments.

Moreover,
∫
|τ(w)y|2J(y, v, w)dµ(y), and the derivatives of Ω are bounded in absolute value by C.
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Assumption 4 bis: For any θ in H, ||Tvθv − Tvθ||[0,1]l = 0⇒ ||θv − θ||H,s = 0 for each v in [0, 1]pv .

Assumption 5 bis:Kz belongs to Kpz,r, Kv belongs to Kpv,r, and Kw belongs to Kl,r.

Assumption 6 bis: (Writing δn ≡Max(hz, hv, hw)2r + 1/nhpzz h
pv
v h

l
w). (a) an is a strictly positive deterministic

sequence of real numbers satisfying lim an = 0 as n→∞. (b) lim δn/an = 0 as n→∞.

Comments: Assumption 4 bis will be met for certain models if the distribution (X,Z,W ) is complete wrt (X,Z)

conditional on V = v (see Lemma ID2). Consider for example a variant of example 2 with X = M(V,C+U) where

E[U |V,W ] = 0, (X,V,C,W ) is observable, and M(v, .) is strictly increasing and continuous in its second argument

for all v in the support of V . Clearly, this model is more restrictive than that described in example 2 because V

must be exogenous. Since E[M−1(V,X)|V,W ] = E[C|V,W ], identification of M(v, .) for each fixed v is achieved

provided the distribution of (X,W ) is complete with respect to X conditional on V = v.

Theorem 1bis

Let θ̂v ≡ Argminθ∈H||T̂vθ − Q̂v||2[0,1]l + an||θ||2H,s. Under assumptions 1bis through 6bis, and for each v in [0, 1]pv

lim E||θ̂v − θv||2H,s = 0 as n→∞,

Furthermore,

(i) If 2s > c then

lim Esup{|θ̂v(t, z)− θv(t, z)|2 : (t, z) ∈ [0, 1]c} = 0 as n→∞,

(ii) If 2s ≤ c then

lim E
∫

[0,1]c
|θ̂v(t, z)− θv(t, z)|2dtdz = 0 as n→∞.

Comments: Theorem 1 bis implies ||θ̂v − θv||[0,1]c = op(1) regardless of the smoothness s ≥ 1. However, (i)

shows that achieving strong consistency in the multivariate setting requires a certain number of weak derivatives

to overcome the dimensionality of (X,Z). The contract between (i) and (ii) arises because the current level of
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mathematical knowledge only permits to assert that the Sobolev norm is stronger than the uniform norm when

2s > c. The univariate case analyzed in Section 3 does not have this smoothness restriction since s = 1 insures the

embedding in question.

Write S(x, z, v, w) ≡ fXZVW (x, z, v, w)τ(w). Under Assumption 3bis, Tv : Hs[0, 1]c → L2[0, 1]l the Frechet deriva-

tive of Tv at θv exists for each v in [0, 1]pv , and has the form

(Tvξ)(w) =

∫
[0,1]c

ξ(t, z)S[θv(t, z), z, v, w]dtdz.

Write H∗ = {u ∈ H2s[0, 1]c : ∇αu(x) = ∇αu(x) = 0, x ∈ ∂[0, 1]c, |α| = 2j + 1 < 2s, j = 0, ..., s − 1} and introduce

T ∗v : L2[0, 1]l → Hs[0, 1]c the adjoint of Tv given by

(T ∗v ξ)(t, z) = CD−1{
∫

[0,1]l
ξ(w)S[θv(t, z), z, v, w]dw},

where D : H∗ → L2[0, 1]c is defined by

Du ≡
∑
|α|≤s

(−1)|α|
c∏
i=1

∇2αi
i u,

and C : H∗ → H2s[0, 1]c is defined as the operator such that for any (u, θ) ∈ H∗ ×Hs[0, 1]c

∫
[0,1]c

(Du)(t, z)θ(t, z)dtdz =
∑
|α|≤s

∫
[0,1]c

|∇(α)(Cu)(t, z)∇(α)θ(t, z)|2dtdz,

Under Assumption 3bis Tv is compact owing to the fact that

∫
[0,1]c+l

|S[θv(t, z), z, v, w]|2dtdzdw <∞.

Consequently, the spectrum of eigenvalues {λ2
j,v}∞j=1 characterizing T ∗v Tv contains 0 as a limit point generating

an ill-posed problem similar in nature to that described in Section 3. To derive a rate of convergence, one may

introduce additional smoothness conditions. These, which mirror those of Section 3, are given next. For any Ψ

belonging to H introduce
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(DTv,Ψ)(ξ)(w) =

∫
[0,1]c

ξ(t, z)S[Ψ(t, z), z, v, w]dtdz.

Assumption 7 bis: (a) For each v in [0, 1]pv , there is a finite real constant Lv > 0 such that for all (Ψ, ξ) ∈ H2,

||Tv(ξ)− Tv(Ψ)−DTv,Ψ(ξ −Ψ)||[0,1]l ≤ Lv||ξ −Ψ||2
[0,1]c

.

(b) For each v in [0, 1]pv , Tv is non singular312. .

Comments: Assumption 7bis(b)is an injectivity condition which demands sufficient ’dependency’ between (X,Z)

and W as explained in Section 3 conditional on V . Assumption 7bis ensures the existence of a non degenerate

spectral system {λ2
j,v, φj,v}∞j=1 for T ∗v Tv from which regularization can be performed to derive a rate of convergence

for the estimator of θv. Furthermore, {φj,v}∞j=1 forms a complete othornormal basis of H[0, 1]c. Hence, θv has the

Fourier representation

θv =

∞∑
j=1

bj,vφj,v

where

bj,v ≡
∑
|α|≤s

∫
[0,1]c

∇(α)θv(t, z).∇(α)φj,v(t, z)dtdz, j ≥ 1,

and

∞∑
j=1

|bj,v|2 <∞.

Assumption 8 bis: For each v in [0, 1]pv ,

√√√√ ∞∑
j=1

|bj,v|2
|λj,v|2

< 1/3Lv,

and

12This latter is met if ||
∫
[0,1]c ξ(x, z)S[θv(x, z), z, w]dx|| = 0 implies ||ξ|| = 0.
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∞∑
j=1

|bj,v|2

ϕ(|λj,v|2)2
<∞,

for some function ϕ meeting Assumption 8 which does not depend on v.

Assumption 9 bis: hz ∝ n−1/(2r+d), hv ∝ n−1/(2r+d),and hw ∝ n−1/(2r+d) where d ≡ l + p. Furthermore,

an � Λ−1(
√
δn) where Λ is as defined in Assumption 9.

Comments: To appreciate Assumption 8 bis introduce

B ≡ supx,z,v,w|∂S(x, z, v, w)/∂x|.

This latter quantity exists under Assumption 3 bis. It follows that Assumption 8bis is met for any Lv ≥ B/2.

Hence, the same trade-off discussed in Section 3 arises between the smoothness of S(x, z, v, w) and the speed of

a decline of the Fourier coefficients. Selecting the bandwidths according to Assumption 9bis yields the optimal

MSE rate of estimation on the operator Tv, namely δn ∝ n−2r/(2r+d). These bandwidths do not coincide with the

classic optimal choice for estimating Qv with the kernel method. The reason is that the size of the estimation error

produced for estimating Ω dominates over that for estimating of Qv. Thus, there is no benefit asymptotically in

using optimal bandwidths for estimating Qv
13.

Theorem 2 bis

Under the assumptions of Theorem 1bis and assumptions 7bis through 9bis, for each v in [0, 1]pv ,

E||θ̂v − θv||2H,s = O{ℵ(n−r/(2r+d))}

Furthermore,

(i) if 2s > c then

Esup{|θ̂v(t, z)− θv(t, z)|2 : (t, z) ∈ [0, 1]c} = O{ℵ(n−r/(2r+d))}
13This is true because of assumption 3 bis which supposes that Ω and M are ’as smooth’. If Ω(x, z, v, w) admits more derivatives

wrt (z, v, w) say r > rvw where rvw denotes the number of derivatives for M(v, w) then there may be a benefit in employing optimal

bandwidths for estimating Qv , namely using instead h′v ∝ n−1/(2r+pv+l),and h′w ∝ n−1/(2r+pv+l).
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(ii) if 2s ≤ c then

E
∫

[0,1]c
|θ̂v(t, z)− θv(t, z)|2dtdz = O{ℵ(n−r/(2r+d))}

Comments: Theorem 2 bis implies ||θ̂v − θv||[0,1]c = Op{
√
ℵ(n−r/(2r+d))}. To get some sense about the speed of

convergence consider the polynomial link case discussed in Section 3. This yields a MSE rate δ
2u/(2u+1)
n . This and

Theorem 2 bis show that, under the polynomial link case, the optimal rate of estimation for the multivariate setting

is Op(n
−2ru/(2r+d)(2u+1)). Thus, θ̂ inherits the same ’curse of dimensionality’ as that affecting a nonparametric

density estimator with a speed of convergence decelerating rapidly as the number of variables in (Z, V,W ) augments.

For the endogenous regression model, this means that the speed of convergence is slower as the number of endogenous

variables augments since d ≥ 2pz + 1 is necessary for identification.

6 Monte Carlo experiments

This section examines the finite sample properties of the estimator of g−1 in the context of the model

Y = g(X) + ε, E[ε|W ] = 0

where g(X) =
√
X, ε ∼ N(0, 1), and (X,W ) is supported on [0, 1]2 with a density function

fXW (x,w) ∝
∞∑
j=1

(−1)j+1j−1sin(jπx)sin(jπw).

This density, used in Hall and Horowitz (2005), is convenient because it renders the task of deriving the eigensystem

of T1 less cumbersome. In this experiment, T and Q are estimated with

K(t) = (15/16) ∗ (1− t2)2I[|t| ≤ 1],

which is a kernel of order r = 2. It is beyond the scope of this paper to offer optimal bandwidths selection criteria.

In this experiment, the bandwidths are selected according to the Silverman’s rule of thumb (Silverman 1986),
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Table 1: Results of Monte Carlo experiments.

n = 200 n = 400

h——0.8h h——0.8h

Ca = 0.1 0.197—0.219 0.146—0.171

Ca = 0.2 0.182—0.206 0.135—0.152

Ca = 0.3 0.174—0.193 0.120—0.154

Ca = 0.4 0.218—0.235 0.139—0.183

Ca = 0.5 0.236—0.275 0.152—0.234

namely h = σwn
−1/(2r+1) where σw denote the empirical standard deviation of W . The regularization sequence is

chosen according to an = Can
−r/(2r+1), where Ca is a positive constant.

In this experiment, the weight function is τ(w) = I[0 ≤ w ≤ 1]. The integrals are computed numerically. The

estimator is retrieved with the simulated annealing method using a budget of 250 iterations. Due to the long

computational time 200 replications are carried out. The simulations are conducted in Gauss. Table 1 shows the

results for E[||θ̂ − θ0||2].
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Conclusion

This paper has presented a new estimator for the inverse a monotonic function g satisfying the condition moment

restriction E[Y − g(X)|W ] = 0 where W is excluded from X. The MSE consistency of this estimator has been

established and its rate of convergence has been derived under generic source conditions. Furthermore, the multi-

variate extension was presented offering notably a new method for the endogenous non-additive regression model.

There are three questions arising from this article. First, the problem of identification. As discussed in Section 3,

the monotonicity of g suggests that one can invoke the concepts of completeness for certain models only. Secondly,

more research needs to be pursued concerning the optimal choice for the regularization sequences. Lastly, the

choice of the link function defining the source conditions. The rate-optimality result of Theorem 2 presumes that

a researcher has some a-priori knowledge over the link function which is often not the case in applied works. As

established in Bissantz, Hohage and Munk (2004) selecting an �
√
δn yields the (non-optimal) MSE rate

√
δn.

Presumingly, one can use this non-optimal estimator to recover the Fourier coefficients and eigenvalues from data

in order to recover a realistic estimate for the link function. This latter may be used to compute a feasible ver-

sion optimal estimator. Examining the Monte-Carlo properties of this feasible version may suggest some adaptive

theory.
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Appendix

This section provides the proofs. We shall write Aθ ≡ Tθ − Q and Âθ ≡ T̂ θ − Q̂. For any f and g belonging to Hs[0, 1] write

< f, g >s=
∑s
k=0 < ∇(k)f,∇(k)g > and ||f ||s ≡

√
< f, f >s. Starting from the proof of Theorem 1, I shall abuse notation using ||.||

and <,> in lieu of ||.||1 and <,>1 for functions belonging to H[0, 1].

Lemma 1: Under the assumptions of Proposition 1,

(a) E||T̂ θ − Tθ||2 = O(δn) uniformly over H.

(b) E||Q̂−Q||2 = O(δn).

proof:

(a) |T̂ θ(w)− Tθ(w)| ≤
∫
[0,1] |Ĥ(θ(x), w)−H(θ(x), w)|dx and a Cauchy-Schwartz’s inequality offers

||T̂ θ − Tθ||2 ≤
∫
[0,1]

∫
[0,1] |Ĥ(θ(x), w)−H(θ(x), w)|2dxdw.

Now consider

E|Ĥ(θ(x), w)−H(θ(x), w)|2 = {EĤ(θ(x), w)−H(θ(x), w)}2 + V arĤ(θ(x), w).

Under Assumption 3, one can use a change of variable along with a Taylor’s expansion to establish

EĤ(t, w)−H(t, w) = O(hr) uniformly.

Another change of variable yields

V arĤ(t, w) = O(1/nh) uniformly.

Thus, E|Ĥ(t, w)−H(t, w)|2 = O(δn) uniformly. This shows the claim.

(b) One can write Q(w) = {r(w)− v(w)} and Q̂(w) = r̂(w)− v̂(w). The Proof follows identically as in (a) using the fact that

E|r̂(w)− r(w)|2 = O(δn) and E|v̂(w)− v(w)|2 = O(δn) uniformly.

Theorem 1:

Under Assumption 2, H is a closed convex subset of the Sobolev’s space H[0, 1] which is an Hilbert space equipped with inner product

<,>1. Under Assumptions 1-6, T̂ is weakly continuous. Since H is closed and convex θ̂ exists by Bissantz, Hohage and Munk (2004).

By definition,
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||Âθ̂||2 + an||θ̂||2 ≤ ||Âθ0||2 + an||θ0||2.

Also

E||Âθ0||2 = E||Âθ0 −Aθ0||2.

This establishes E||Âθ0||2 = O(δn) by Lemma 1.

Consequently

E||Âθ̂||2 ≤ O(δn) + anM ,

(1)

anE||θ̂||2 ≤ O(δn) + anM ,

(2)

for some finite real constant M which exists by Assumption 2.

Now a triangular inequality yields

E||Aθ̂||2 ≤ 2{E||Aθ̂ − Âθ̂||2 + E||Âθ̂||2},

with

E||Aθ̂ − Âθ̂||2 = O(δn) by lemma 1, and

E||Âθ̂||2 = O(δn) +O(an) by (1).

It follows from these that

E||Aθ̂||2 = O(δn) +O(an) and E||θ̂||2 ≤ O(δn/an) + ||θ0||2.

This establishes

lim E||Aθ̂||2 = 0 and limsup E||θ̂||2 ≤ ||θ0||2.
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Because T is weakly sequentially closed by Assumptions 1-3, the above result along with Assumption 4 implies lim E||θ̂− θ0||2 = 0 by

Theorem 2 of Bissantz, Hohage and Munk (2004). The proof follows because ||.||sup < M ||.||1 holds for some constant M on H[0, 1]

by the Sobolev embedding Theorem (Adams and Fournier 2013). QED.

Theorem 2:

The proof is based upon the argument of Theorem 2.1-2.2 of Lu, Pereverzev and Ramlau (2007). I shall write D ≡ T , and ψ(t) ≡

ϕ(t)t−1/2. Under Assumptions 3-7, Theorem 2.42-2.39 of Florens and Carrasco (2007) and the Sobolev embedding theorem, D is a

compact non-singular operator on H[0, 1] ⊂ L2[0, 1] Hence, Kress (1999) Theorem 15.16 implies the existence of a spectral system

{λj , φj , ψj , j ≥ 1} with λj 6= 0 for j = 1, 2, ... and

Dφj ,= λjψj and D∗ψj = λjφj , j ≥ 1.

Furthermore, {φj , j ≥ 1} and {ψj , j ≥ 1} form a complete orthonormal basis of H[0, 1] and {ψj , j ≥ 1} form a complete orthonormal

basis of L2[0, 1] by Assumption 7b.

Part I: Write θn ≡ ArgminH||Aθ||2 + an||θ||2 and f ≡ θ0 − an(D∗D + an)−1θ0. Note that θ0 = ϕ(D∗D)$ for some ||$|| < ∞ by

Assumption 8. Furthermore, v ≡ (DD∗)−1Dθ0 meets ||v|| < 1/3L.

Introduce

R(f) ≡ Af −D(f − θ0), and

R(θn) ≡ Aθn −D(θn − θ0).

Under Assumption 7, there is a real constant L <∞ such that

||R(f)|| ≤ L||f − θ0||2, and

||R(θn)|| ≤ L||θn − θ0||2.

By definition

||Aθn||2 + an||θn||2 ≤ ||Af ||2 + an||f ||2.

(3)

Note that
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||θn||2 = ||θn − θ0||2 + 2 < θn − θ0, θ0 > +||θ0||2, and

||f ||2 = ||f − θ0||2 + 2 < f − θ0, θ0 > +||θ0||2.

These used into (3) give

an||θn − θ0||2 ≤ B1 +B2 +B3 +B4 +B5

(4)

where

B1 = 2an < R(θn), v >≤ 2anL||v||.||θn − θ0||2

B2 = 2 < D(f − θ0), R(f) >≤ 2L||D(f − θ0)||.||f − θ0||2

B3 = ||R(f)||2 ≤ L2||f − θ0||4

B4 = an||f − θ0||2

B5 = ||D(f − θ0) + anv||2

Moreover,

||D(f − θ0)|| = an||D(D∗D + an)−1D∗v|| ≤ an||v||, and

||D(f − θ0) + anv|| = a2n||(D∗D + an)−1ψ(D∗D)$||,

with the last equality arising because D(f − θ0) + anv = (DD∗ + an)−1v with ||(DD∗ + an)−1v||2 = ||(D∗D + an)−1ψ(D∗D)$||2.

These and (4) imply

||θn − θ0||2 ≤ {(1− 2L||v||)}−1{(1 + 2L||v||).||f − θ0||2 + a−1
n L2||f − θ0||4 + a3n||(D∗D + an)−1ψ(D∗D)$||2}.

Now we shall bound each norm in the right-hand side of the above inequality.

||f − θ0|| = an||(D∗D + an)−1ϕ(D∗D)$|| ≤ an||$||supj≥1|ϕ(λ2j )/(an + λ2j )|.

This and Assumption 8 imply
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||f − θ0|| = O(ϕ(an)) (i)

Furthermore

a3n||(D∗D + an)−1ψ(D∗D)$||2 ≤ an||$||2supj≥1|anψ(λ2j )/(an + λ2j )|2.

This and Assumptions 8-9 imply

a3n||(D∗D + an)−1ψ(D∗D)$||2 = O(an|ψ(an)|2) = O(|ϕ(an)|2) (ii)

Using (i)-(ii) along with Assumptions 8-9 yield

||θn − θ0||2 = O(|ϕ(an)|2) +O(|ϕ(an)|4/an) = O(|ϕ(an)|2).

Part II. By definition

||Âθ̂||2 + an||θ̂||2 ≤ ||Âθn||2 + an||θn||2

(5)

Adding 2 < T̂ θ̂ − Q̂,Q− T̂ θn > +||T̂ θn −Q||2 + an{||θn||2 − 2 < θ̂, θn >} on both sides in (5) yields

||T̂ θ̂ − Q̂+Q− T̂ θn||2 + an||θ̂ − θn||2

≤

||T̂ θn − Q̂||2 + ||T̂ θn −Q||2 + 2 < T̂ θ̂ − Q̂,Q− T̂ θn > +2an < θn, θn − θ̂ > .

Thus

an||θ̂ − θn||2

≤ ||Q̂−Q||2 + 2 < Tθn −Q,Tθn − T θ̂ > +2an < θn, θn − θ̂ > +2 < T̂θn − Tθn, T̂ θn − T̂ θ̂− Tθn + T θ̂ > +2 < T̂θn − Tθn, T θn − T θ̂ >

+2 < Tθn −Q, T̂ θn − T̂ θ̂ − Tθn + T θ̂ >.

Now use the Euler’s condition [DTθn ]∗A(θn) + anθn = 0 and Assumption 7 resulting in

an||θ̂−θn||2 ≤ ||Q̂−Q||2+2 < Tθn−Q,Tθn+DTθn (θ̂−θn)−T θ̂ > +2 < T̂θn−Tθn, T̂ θn−T̂ θ̂−Tθn+T θ̂ > +2 < T̂θn−Tθn, T θn−T θ̂ >

+2 < Tθn −Q, T̂ θn − T̂ θ̂ − Tθn + T θ̂ >.

The Cauchy-Schwartz’s inequality offers
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an||θ̂ − θn||2 ≤ ||Q̂−Q||2 + 2L||Tθn −Q||.||θ̂ − θn||2 + 2U1 + 2U2 + 2U3

where

U1 = ||T̂ θn − Tθn||.||T̂ θn − T̂ θ̂ − Tθn + T θ̂||

U2 = ||T̂ θn − Tθn||.||Tθn − T θ̂||

U3 = ||Tθn −Q||.||T̂ θn − T̂ θ̂ − Tθn + T θ̂||.

Furthermore, ||v|| < 1/3L by Assumption 8. This and Theorem 2.3 of Tautenhahn and Jin (2003) yield

||Tθn −Q|| ≤ an||v||.

Consequently

{1− 2L||v||}anE||θ̂ − θn||2 ≤ E||Q̂−Q||2 + 2{EU1 + EU2 + EU3}

Now from Lemma 1

E||Q̂−Q||2 = O(δn).

Furthermore, using the Cauchy-Schwartz’s inequality along with Lemma 1 yields

EU1 ≤ {E[||T̂ θn − Tθn||2]E[||T̂ θn − T̂ θ̂ − Tθn + T θ̂||2]}1/2 = O(δn)

EU2 ≤ {E[||T̂ θn − Tθn||2]E[||Tθn − T θ̂||2]}1/2 = O(anδ
1/2
n )

EU3 ≤ {E[||Tθn −Q||2]E[||T̂ θn − T̂ θ̂ − Tθn + T θ̂||2]}1/2 = O(anδ
1/2
n )

This proves E||θ̂ − θn||2 = O(δn/an) by Assumptions 8-9.

Part III. Consider the inequality

E||θ̂ − θ0||2 ≤ 2{E||θ̂ − θn||2 + ||θn − θ0||2}.

34



This and combining the results of parts I-II proves the claim.

Theorem 1bis: Under the assumptions of Theorem 1bis

supt,z,v,wE|Ω̂[t, z, v, w]− Ω[t, z, v, w]|2 = O[max(hz , hv , hw)2r + 1/nhpzz hpvv hlw],

Furthermore, one can write Qv(w) = r(v, w)−m(v, w) and Q̂v(w) = r̂(v, w)− m̂(v, w) where

supv,wE|r̂(v, w)− r(v, w)|2 = O[Max(hv , hw)2r] + 1/nhpvv hlw, and

supv,wE|m̂(v, w)−m(v, w)|2 = O[Max(hv , hw)2r + 1/nhpvv hlw].

It follows directly that

E
∫
[0,1]l |(T̂vϕ)(w)− (Tvϕ)(w)|2dw = O[Max(hz , hv , hw)2r + 1/nhpzz hpvv hlw],

uniformly over H, and

E
∫
[0,1]l |Q̂v(w)−Qv(w)|2dw = O[Max(hv , hw)2r + 1/nhpvv hlw].

Write Av ≡ Tv −Qv and Âv ≡ T̂v − Q̂v . These last two results yield

E
∫
[0,1]l |(Âvϕ)(w)− (Avϕ)(w)|2dw = O[max(hz , hv , hw)2r + 1/nhpzz hpvv hlw],

uniformly over H. The proof follows from that of Theorem 1 because ||.||sup < M ||.||1 for some constant M whenever 2s > c by the

Sobolev embedding Theorem (Adams and Fournier 2013).

Theorem 2bis: The proof is analogous as that of Theorem 2 and is therefore omitted.

Lemma ID 1: Assume X has support [a, b] and H = {θ ∈ H[0, 1] : θ(0) = a, θ(1) = b,∇θ ≥ µ, ||θ||2 + ||∇θ||2 ≤ M} where M < ∞

and µ > 0 are known real constants. Furthermore, assume every non-constant random variable U(X) with E|U(X)|2 <∞ is correlated

with some random variable R(W ) with E|R(W )|2 <∞. Under Assumptions 1-3, Assumption 4 is met.

Proof: ||Tθ −Q|| = 0 implies

∫ 1
0 P [X > θ(t)|W = w]dt =

∫ 1
0 P [X > θ0(t)|W = w]dt.

By assumption 2, the weak derivatives of θ coincides with its derivative whenever the latter exist. Hence, there is a function θ∗ = θ a.e

which is absolutely continuous. Consequently, for 0 ≤ t1 < t2 ≤ 1

θ∗(t1)− θ∗(t2) =
∫
[t1,t2]

∇θ(t)dt ≥ µ(t2 − t1) > 0
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Thus, θ∗ has an inverse on [a, b]. The Fubini’s Theorem yields

E[θ−1
∗ (X)|W ] = E[θ−1

0 (X)|W ] almost surely.

Now under the assumptions of Lemma ID 1, (X,W ) is complete wrt X which insures θ−1
∗ (x) = θ−1

0 (x) up to a null set of [a, b]. But

θ−1
∗ and θ−1

0 are continuous on [a, b] which implies that the null set is empty by Rudin (2003), p 6.2. It follows that θ−1
∗ (x) = θ−1

0 (x)

everywhere on [a, b] which shows θ∗(t) = θ0(t) everywhere on [0, 1]. Thus, θ = θ0 a.e. and ∇θ = ∇θ0 a.e.

Q.E.D

Lemma ID 2: Assume X has support [a, b] and assume θv belongs to H = {θ ∈ Hs[0, 1]c : θ(0, z) = a, θ(1, z) = b, ∂θ/∂t ≥

µ,
∑
|α|≤s ||∇(α)θ||2

[0,1]c
≤ M} for some integer s > 0 where µ > 0 and M < ∞ are known real constants. Furthermore, assume for

each v in [0, 1]pv , every non-constant random variable U(X,Z) with E|U(X,Z)|2 < ∞ is correlated conditional on V = v with some

random variable R(W ) with E|R(W )|2 <∞. Under Assumptions 1bis-3bis, Assumption 4bis is met.

Proof: For each v in [0, 1]pv , ||Tθ − Tθv || = 0 on H implies

∫
[0,1]pz

∫ 1
0 P [X > θ(t, z)|Z = z, V = v,W = w]f(z|v, w)dtdz =

∫
[0,1]pz

∫ 1
0 P [X > θv(t, z)|W = w, V = v, Z = z]f(z|v, w)dtdz.

By assumption 2bis, the weak derivative of θ with respect to its first argument coincides with its derivative whenever the latter exist.

Hence, there is a function θ∗ = θ a.e [0, 1]× [0, 1]pz which is absolutely continuous with respect its first argument. It follows by Lemma I

that θ∗ has an inverse on [a, b] wrt first argument. Now taking the inverses of both θ∗(t, z) and θv(t, z), and using the Fubini’s Theorem

yields

∫
[0,1]pz

∫ 1
0 E[θ−1

∗ (X,Z)|W = w, V = v, Z = z]f(z|v, w)dtdz =
∫
[0,1]pz

∫ 1
0 E[θ−1

v (X,Z)|W = w, V = v, Z = z]f(z|v, w)dtdz.

Therefore

E[θ−1
∗ (X,Z)|V = v,W ] = E[θ−1

v (X,Z)|V = v,W ] almost surely.

This establishes θ−1
∗ (x, z) = θ−1

v (x, z) up to a null set of [a, b] × [0, 1]pz due to the fact that (X,Z,W )|V = v is complete wrt (X,Z)

under the assumptions of Lemma ID 2. But θ−1
∗ and θ−1

v are continuous on [a, b] which insures that the null set of [a, b] is empty

by Rudin (2003), p 6.2. It follows that θ−1
∗ (x, z) = θ−1

v (x, z) everywhere on [a, b] and for almost every z in [0, 1]pz . This proves

θ∗(t, z) = θv(t, z) everywhere on [0, 1] for almost every z in [0, 1]pz . Thus, ∇(α)θv = ∇(α)θ a.e. for |α| ≤ s.

QED.
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