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ABSTRACT

We integrate parking in a simple manner into the basic monocentric
model. In equilibrium, the city divides into three zones. Closest to the
C.B.D. are parking lots, with residential housing further out. Residents
contiguous to the parking lots walk to work. Those in the last band drive
to a parking lot and then walk the remaining distance to the C.B.D..
We first assume that parking is unattributed and subject to a common
property resource problem. Then the social optimum configuration is
identical to the equilibrium when parking lots are monopolistically com-
petitively priced. That is, the optimum is decentralized by private own-
ership when operators maximize profits under competitive constraints.
With attributed parking, the optimum is also attained in equilibrium,
and entails higher welfare than unattributed parking.



1 Introduction

In Anderson and de Palma (2004) we described a simple model of con-
gested parking and compared the optimal allocation of parking with the
market equilibrium. A central result is that the optimum is achieved
when parking lot operators price in a monopolistically competitive fash-
ion. In that model we took the amount of land allocated to parking as
exogenous, and we did not consider its alternative use. We further sup-
posed that all parkers were driving from far away and had no alternative
but to park somewhere - walking to the C.B.D. was not an option.
In this paper we embed the parking model used before into a stan-

dard monocentric city model. We therefore allow for endogenous land
use: land can be used for residences or parking lots, and land rents are
determined in the model. In equilibrium, households that reside close to
the city walk directly to the city (without using their cars), while those
further out drive to a parking lot and then walk the remaining distance.
As well as characterizing the optimal and equilibrium allocation of park-
ing, we show the robustness of our previous finding in the equilibrium
city: the socially optimal pattern is attained as the equilibrium when
parking lot operators price in a monopolistically competitive manner.
Several authors have previously considered the economics of park-

ing. These include Arnott, de Palma, and Lindsey (1991), Arnott and
Rowse (1999), Calthrop, Proost, and Van Dender (2000), Calthrop and
Proost (2005), Glazer and Niskanen (1982), Verhoef, Nijkamp and Ri-
etveld (1995), and Voith (1998): Arnott, Rave, and Strob (2005) provide
an exemplary overview of the literature and economic issues. However,
with the notable exception of Voith (1998), these authors do not con-
sider the interaction between transportation, parking, and land use that
we address in this paper. Our approach is complementary to the model
of Voith (1998) in that we consider the relation between market perfor-
mance and the optimum, whereas he looks at an equilibrium model. We
discuss further differences in the two models in the conclusions.
In the next section we lay out the model. In section 3 we describe the

optimal arrangement, while section 4 describes the market equilibrium
and provides the main equivalence result between optimum and equilib-
rium. Section 5 briefly lays out the equivalence between optimum and
equilibrium allocations when parking is deterministic (and not subject
to the congestion inherent in the earlier model). Section 6 gives some
final discussion.
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2 The model of parking and land use

Themodel of Anderson and de Palma (2004) pertains to shoppers driving
to a distant shopping location. Our intention in this note is to allow
parking lots to compete with residential areas. We introduce residential
land use as well as parking land use to study how parking influences
the configuration of the city. We also consider market pricing of parking
spaces. As we show, pricing will completely eliminate market failure and
decentralize the social optimum if the parking sector is monopolistically
competitive in the sense to be made precise below. This result strengths
the conclusion of the other paper.
The equilibrium we shall derive involves a band of parking lots con-

tiguous to the city center outside of which there is residential housing.
The parking lot operators are monopolistically competitive and make
zero profits. They also must bid at least as much as householders for
the land on which the lots are situated. Since parking is a scarce com-
modity, it will command a positive price (otherwise householders will
outbid parking lot operators). This means that there will be a band
of the residential area, adjoining the parking lots, from which residents
walk to their final destination. Further out, residents drive, then park
and walk.
Let the city be k meters wide, and we normalize the size of a car so

that each vehicle occupies a square meter. There are N households. All
households have identical tastes, and each occupies a house of fixed size,
s square meters. Note that s > 1 since houses are larger than cars. Let
xp be the limit of the parking lots and xr be the city limit. The amount
of land available for housing construction is (xr − xp)k which must be
equal to N s, the space occupied by the N households.
We use the same parking congestion technology as in Anderson and

de Palma (2004). Let the cost of searching whether a particular parking
spot is empty be γ. If there are k parking spots at location x and n (x)
people park there, then we assume that the expected number of lots
searched is k /[k − n (x)] . The background for this formulation is as
follows. The probability that a spot is empty is q (x) = [k − n (x)] /k , so
that the expected number of spots searched is 1 /q (x) = k /[k − n (x)] .
Let tw be the walking cost per meter and td the driving cost per

meter so that t = tw − td denotes the net cost of walking (instead of
driving). In the sequel we assume that γ < tNs /k , to insure that some
residents (at least those who are farthest away) drive at the optimum
(see below).
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3 The optimum

We first determine the social optimal allocation. Let xw denote the
farthest distance from which residents walk directly to the C.B.D.. The
social cost is the walking cost (for residents who do not use their cars)
plus driving, search and walking cost for the residents who use their cars.
The social cost, denoted by SC is minimized:

k

s

Z xw

xp

twxdx+
k

s

Z xr

xw

tdxdx+

Z xp

0

µ
γ k

[k − n (x)]
+ tx

¶
n (x) dx

under the constraints:½
k
s
(xr − xp) = NR xp

0
n(x)dx = k

s

R xr
xw

dx = k
s
(xr − xw) .

The first term in the social cost is the total cost for those who walk
directly to the C.B.D.: the density of households is k /s . The second
term is travel cost for households who drive to the C.B.D.. The third
term is the parking cost: it includes the cost of walking from the assigned
parking lot net of the driving cost from the lot to the C.B.D. (since that
was counted in the second term). The two constraints are that the land
devoted to residences houses theN households and that the total number
of drivers is equal to the total number of parked cars.
The Lagrangian is given by:

L = SC − λ

µZ xp

0

n(x)dx− k

s
(xr − xw)

¶
− µ

µ
k

s
(xr − xp)−N

¶
.

The first-order conditions are:

n(x) : γ
k2

[k − n (x)]2
+ tx− λ = 0 (1)

xp : −k
s
twxp +

µ
γ k

[k − n (xp)]
+ txp

¶
n (xp)− λn(xp) + µ

k

s
= 0 (2)

xr : tdxr + λ− µ = 0 (3)

xw : txw − λ = 0. (4)

The first of these equations (1) stipulates that the marginal social
cost from adding a parked car be the same at all locations in the parking
area, which runs from the C.B.D. to xp. The common cost of an extra
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parked car at x under the optimal parking arrangement is λ, and this is
measured with the C.B.D. as the base point (so that λ is the social cost
of a parked car at the C.B.D.). As with the external drivers case above,
the number of parked cars at any location decreases with the distance
from the C.B.D.. From (4), this common cost is equal to the differential
commuting cost of the individual living at xw. At the optimum, it is
a matter of social indifference whether this individual walks directly to
work (at social cost twxw) or drives and parks (at social cost tdxw+λ).
To interpret (3), rewrite it as: tdxr + λ = µ. From the constraint

that the population N must be housed between xp and xr, µ is the social
commuting cost of adding an individual to the city. This individual can
be housed at the city boundary, xr, from which point he must travel to
the C.B.D. at cost tdxr and his parking cost is λ.
Combining (3) and (4) gives another expression for the cost of an

additional inhabitant:

td (xr − xw) + twxw = µ. (5)

The interpretation here is that the resident housed at xr might as well
drive to xw and have the inhabitants at xw walking to the C.B.D..
For what follows, it is helpful to draw out the social benefit of an

extra parking space at x. This is necessarily less than the social cost of
an extra parked car because of the imperfect matching of cars to spaces.
The social cost of an extra parking space at x is given by differentiating³
γ k
[k−n(x)] + tx

´
n (x) (the integrand in the last term of the social cost

above) with respect to k. This gives the social benefit (i.e. the negative
of social cost) as:

B(x) = γ

µ
n(x)

k − n (x)

¶2
. (6)

This is the shadow rent of land consecrated to parking, and is to be
compared below to the market rent on parking lots. We can rewrite this
shadow rent using (1), as

B(x) =

∙
n(x)

k

¸2
[λ− tx] .

Both components of B(x) are decreasing in distance x. The first reflects
the lower number of parkers further out and the second is the direct
distance effect.
From (1) evaluated at xp,

γ
k2

[k − n (xp)]
2 + txp = λ
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we can substitute this expression into (2), to give:

µ = twxp + γs

µ
n (xp)

k − n (xp)

¶2
. (7)

As before, the L.H.S. is the social cost of an additional resident with
a lot of size s. This additional resident can be housed anywhere at the
optimal arrangement, so allocate her a lot at the parking boundary xp.
She walks to the C.B.D. at social cost twxp. Giving her a housing lot at
xp takes away s from parking. We know from (6) that the social benefit

of an extra square meter of parking space is B(x) = γ
³

n(x)
k−n(x)

´2
, which

is the second term of the R.H.S. of (7).
Another interpretation is afforded by substituting (5) into (7):

td (xr − xw) + tw (xw − xp) = γs

µ
n (xp)

k − n (xp)

¶2
. (8)

The R.H.S. is still the shadow rent of a lot at xp. Suppose that we
transfer a citizen from the city limit, xr, to the parking limit xp. As we
argued above, her initial journey costs are td (xr − xw) to drive to the
walking limit, and twxw thereafter. Her new journey costs are simply
twxp.
We now describe how the solution can be found. Combining (1) and

(4) we get:

γ
k2

[k − n (xp)]
2 = t (xw − xp) .

or:

1

1− n (xp) /k
=

s
t (xw − xp)

γ

n (xp)

k
= 1−

r
γ

t (xw − xp)

Inserting this expression in (8) leads to:

td (xr − xw) + tw (xw − xp) = s

µq
t (xw − xp)−√γ

¶2
,

which can be rewritten, noting that (xr − xp) = Ns /k , as:

td
Ns

k
+ t (xw − xp) = s

µq
t (xw − xp)−√γ

¶2
. (9)
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The optimal number of drivers parking at x is (by using (1) and (4)):1

no (x) = k

Ã
1−

√
γp

t (xw − x)

!
< k, x ∈ [0, xp]. (10)

The parking constraint can then be written:Z xp

0

Ã
1−

√
γp

t (xw − x)

!
dx =

1

s
(xr − xw) .

Therefore:

xp + 2

r
γ

t

¡p
xw − xp −√xw

¢
=

xr − xw
s

=
N

k
− xw − xp

s
(11)

We have two equations (9) and (11) in two unknowns: xw and xp.
Differencing these equations, we get:

xw =
1

t

Ãr
N

k
tw −√γ

!2
.

Then, one can find no (x) from (10). The other endogenous variable xp
can now be found by replacing back xw in the equation (9) to get :

xp = xw − Z2

t
,

where Z is the unique positive solution of (recall s > 1):µ
1− 1

s

¶
Z2 − 2√γZ −

µ
td
N

k
− γ

¶
= 0.

This fully characterizes the structure of the city with optimal parking.
Note that the solution just derived is uniquely determined.

1Note that we require that the cost per parking search, γ, be sufficiently small:

γ < t (xw − xp) .

If this condition does not hold, people at xw would never drive. If γ is too large, it
is optimal for all households to walk. Then the city has length Ns /k . Having one
household drive from the city limit reduces transport cost by tNs /k . If this is less
than γ then it is not worthwhile having anyone drive and park. The condition above
is equivalent since with no parking xp = 0 and xw = xr = Ns /k .
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4 Equilibrium cities with private parking lot oper-
ators

We now consider the equilibrium city structure. Since all households
have identical tastes, they all get the same utility level in equilibrium
and it is land rents that adjust to insure this condition. The city has the
same overall structure as above: there is a band of parking lots followed
by residential lots from which households walks to the C.B.D. and the
last band comprises residential lots from which household commute to
a parking lot and then walk the remaining distance to the C.B.D.. In
particular, the households located at xw are indifferent between walking
to the C.B.D. and driving then parking. This means that

txw = λ̃ (12)

where eλ is the full price of parking at any x.
The full price of a parking spot (or a parking space) at distance x

from the city center is the same for all parking bands at equilibrium and
it is the price of a parking lot p(x) that must adjust to insure that this
condition holds. This equilibrium condition is written as

p(x) + tx+
γk

k − n(x)
= eλ, x ∈ [0, exp]. (13)

Parking lots at a distance x from the C.B.D. are owned by a parking
operator. There is a continuum of parking operators; each one selects
his price in order to maximize his expected profit taking as given the
full price constraint (13). Each operator is a price setter, but subject to
a utility constraint for consumers. The higher the price set, the fewer
parkers will want his slot, so reducing the expected time to find a vacant
slot. Because we have such a price-setting of a continuum of (quality
differentiated) substitute products, along with entry driving profits to
zero, we term this market structure monopolistic competition.
The gross revenue per square meter of parking space owned (we as-

sume that operating costs are zero) of a parking operator at x is there-
fore:

R(x) =
p(x)n(x)

k
=

µeλ− tx− γ k

k − n(x)

¶
n(x)

k
, x ∈ [0, exp]. (14)

Revenue maximization by choice of n (x) (or, equivalently, p (x)) then
implies

tx+
γk2

[k − n(x)]2
= eλ, x ∈ [0, exp]. (15)
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In equilibrium, land rent r(x) at x ∈ [0, exp] insures that operators make
zero profit so that the land rent per square meter at x is equal to the
optimized value of R(x).
At xp the land rent for the use of land as parking lots must equal the

residential land rent. This condition ties down the remaining equilibrium
conditions.
To find the residential land rent at xp, we use the indifference of

households across residential locations. The household at xr pays no
land rent (since the agricultural land rent is set to zero) and pays travel
cost tdxr + λ̃. This is also the rent plus travel cost incurred by the
household at xp so that sr(xp) + twxp = tdxr + λ̃ or

r(xp) =
tdxr − twxp + λ̃

s
(16)

Equating (16) to (14) gives:

eλn (xp) = k
³
tdxr − twxp + eλ´

s
+

µ
txp +

γk

k − n(xp)

¶
n(xp). (17)

We can now compare the equation describing the equilibrium with
those for the optimum. First of all, the two constraints from the optimum
problem take exactly the same form in the market equilibrium. Equation
(15) is identical to equation (1) with λ̃ replacing λ. Equation (12) is
identical to equation (4), again with λ̃ instead of λ. Finally, we can
combine (2) with (3) to give:

λn(xp) =
k (tdxr − twxp + λ)

s
+

µ
txp +

γk

k − n (xp)

¶
n (xp) (18)

which is the same as (17) with λ̃ instead of λ. Therefore, the equilibrium
satisfies the same equations as the optimum. Since we have shown above
that there is a unique solution to the optimum problem, then the next
result follows:

Proposition 1 The monopolistic competition equilibrium of the linear
city with on-street parking has the same allocations as the optimum.

This result is surprising because we might expect the level of conges-
tion to be too high at equilibrium. With congestion externalities, one
might expect too many households to use their cars and to provoke exces-
sive search costs for others. Through pricing, monopolistic competition
among parking lot operators suffices to render optimal the equilibrium.
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In the terminology of public finance, each parking lot operator can be
viewed as operating a "congestible club". As shown in Scotchmer (1985),
when clubs are identical, club pricing in the limit as the number of clubs
goes to infinity is efficient and each club sets a per-user price equal to
the congestion externality cost. Our result can be viewed as a variant of
that result, with clubs differing by the vertical differentiation afforded
by accessibility - each parker attaches a premium to more accessible
locations.
It can be easily verified that Proposition 1 holds for other congestion

technologies, provided the search time at x is an increasing function of
the occupancy n(x) at x. The intuition is as follows. Since each parking
lot operator is small, it prices such that the full price (monetary price
plus congestion cost) is constant at all locations. Clearly, the price set
by the operator at x is p(x) = MSC(x) − PC(x), i.e. the difference
between the marginal social cost at x and the private cost at x. This
price is optimal since it induces each individual to exactly pay for the
externality she generates.

5 Proprietary Parking Places

The modeling above assumes that there is congestion (and a common
property access problem) in the search for parking. If all trips were
perfectly predictable and market transactions were perfectly costless,
individuals could reserve parking spaces (say through the Internet) at
specific locations and markets would clear without any lost time cruising
for parking. This indeed is similar to the market for commuter parking
where commuters make predictable and regular trips. They therefore
naturally have long-term contracts over their parking spaces. In this
Section we briefly describe the equilibrium to such a set-up.
For ease of notation, let k = 1. Equilibriumwill now still be described

by three bands of land use, parking lots, residential housing for those
walking, and residential housing for those who drive then park then walk.
However, since now each individual parker has her own reserved spot,
there is no search-for-parking congestion and the number of parking lots
will equal the number of households in the driving zone.
Equilibrium entails rents that equalize utility across commuting op-

tions. It should also be true that all parking spots are equally valuable,
so individuals are indifferent as to where they park (so that for such x,
r (0) + tdx = r (x) + twx).
First, the individual from the outskirts of the city, at xr, is indiffer-

ent between living there and anywhere else, in particular, living at the
boundary between residences and parking lots, xp. Since the rent at xr
is zero, this means the outside individual pays the parking fee at the
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C.B.D. (without loss of generality, since all lots have the same inclusive
cost) plus the cost of driving there, so

r (0) + tdxr = sr (xp) + twxp, (19)

where the R.H.S. is the rent plus walking cost of the individual at xp.
Second, since all parking lots are equally valuable, the one at xp will rent
at the central rent minus its disadvantage in net transport costs, i.e.,

r (xp) = r (0)− [tw − td]xp. (20)

Substituting (20) into (19) gives

twxp + [s− 1] r (0) = tdxr + s [tw − td]xp. (21)

Finally, r (0) is given by the indifference between driving (and park-
ing) and walking from xw (the boundary between these two zones):

tdxw + r (0) = twxw.

Substitution now gives

[s− 1] [tw − td] [xw − xp] = td [xr − xp] (22)

as the equilibrium relation between the various zone boundaries.
The optimum relation between these boundaries is determined by

the thought experiment of moving an individual household from the
parking/walking boundary, xw, to the fringe of the city, and transforming
her razed lot into s parking spaces. This parking lot will be used by
s households, the one moved to the fringe plus s − 1 at xw, who are
those who most benefit from parking (since they walk farthest). The
extra social cost from moving the household to the fringe is td [xr − xp],
which is the extra distance that household now has to drive (the walking
distance is the same). The social benefit to the s−1 households who can
now park at xp is [tw − td] [xw − xp] per household in saved commuting
costs. But these terms are exactly those on either side of (22). Hence
the equilibrium allocation is optimal.
When parking is attributed the welfare level is higher on two counts.

First, there is no wastage of unused parking lots — which itself means
that the residential area is pushed further out when there is a com-
mon access problem. Second, the inherent time wasted in looking for
parking is eliminated if households have assigned lots and know exactly
where to find them. In practice, parking is a mixture of attributed
and unattributed (assigned and unassigned) lots. Commuters have pre-
dictable and daily journeys and so use long-term contracts with assigned,
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attributed parking. Shoppers have less regular and more variable needs.
The organizational costs of getting an assigned parking lot in advance
seem prohibitive for such trips (and might need to be made on a per trip
basis), so an attributed system with auctioning of lots to the highest
instantaneous bidder would cost too much in transaction time. Thus
the observed pattern is mixed: some parking is attributed, and some is
not. Insofar as those who do not plan in advance add to the congestion
of those looking for parking and increase the amount of land needed for
parking, there are negative externalities on other individuals.

6 Conclusions

In our model, agents compete along two interdependent dimensions:
drivers compete for parking space, while parking operators and residents
compete for land. Parking spaces suffer from the common property re-
source problem when they are unpriced (see Anderson and de Palma,
2004): with parking lot owners, this resource is priced and we have
shown that it is priced optimally. The assumption of a monopolistically
competitive industry structure is crucial to the optimality of the market
outcome. For example, if all parking lots were owned by the same in-
dividual, pricing would involve a market power distortion. Oligopolistic
ownership would be expected to entail a similar distortion.
We have assumed in our main model that congestion occurs in the

search for parking. We also considered the case when all trips down-
town are perfectly predictable, (for example, we might have long-term
contracts for parking for commuters). Then there is no congestion in
parking and all parking lots would be occupied. This would compress
the land needed for parking (to park the commuters’ cars), and the al-
location is optimal.
Voith (1998) provides a general equilibrium analysis of a similar

model with some additional details. He considers an open-city set-up
(so the number of inhabitants is determined by utility available else-
where), although without an explicit representation of space that can be
used for residential or parking purposes. He assumes constant returns
to scale production by business firms located at the C.B.D. and allows
for agglomerative externalities among firms. He also includes an alter-
native transport mode, mass transit, which is assumed priced at cost
plus subsidies. Commuters can either take the mass transit or else they
can drive, and driving entails congestion depending on the number of
road-users. Land at the C.B.D. can be used either by businesses or for
parking, but the C.B.D. is essentially spaceless in that land used does
not extend commuting distances. In this context, Voith derives compar-
ative static results on such variables of interest as wages and rents, and is
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particularly interested in changes induced from raising parking rates and
transit subsidies. He does not allow for the common property problem in
parking since he assumes that effectively commuters own their parking
lots. It would be useful to integrate the two modeling approaches and
reconfigure the welfare analysis in the broader model.

References

[1] Adler, N. (1985). Street parking: the case for communal property.
Logistic and Transportation Review, 21, 375—387.

[2] Anderson, S. and A. de Palma (2004). The Economics of Pricing
Parking. Journal of Urban Economics, 55, 1-20.

[3] Arnott, R., A. de Palma and R. Lindsey (1991). A temporal and
Spatial Analysis of Commuter Parking. Journal of Public Eco-
nomics, 45, 301-337.

[4] Arnott. R., Rave, T., and Schob, R. (2005)Alleviating Urban Traffic
Congestion. MIT Press Cambridge, MA.

[5] Arnott. R. and J. Rowse (1999) Modeling Parking, Journal of Urban
Economics, 45, 97-124.

[6] Calthrop, E., S. Proost and K. Van Dender (2000) Parking policies
and road pricing. Urban Studies, 37, 63-76.

[7] Calthrop, E. and S. Proost (2005). Regulating urban parking space.
Regional Science and Urban Economics, 36, 29-48.

[8] Glazer, A. and E. Niskanen (1992) Parking Fees and Congestion.
Regional Science and Urban Economics, 22, 123-132.

[9] Fujita, M. (1989) Urban Economic Theory. Land Use and City Size.
Cambridge University Press.

[10] Scotchmer, S. (1985) Profit Maximizing Clubs. Journal of Public
Economics, 27, 25-45.

[11] Verhoef, E. P., P. Nijkamp, and P. Rietveld (1995) The economics of
regulatory parking policies: The (im)possibilities of parking policies
in traffic regulation. Transportation Research A, 29, 141—156.

[12] Voith, R. (1998) Parking, Transit, and Employment in a Central
Business District. Journal of Urban Economics, 44, 43-58.

12


