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Abstract

We revisit the fundamental issue of market provision of variety associated with Chamber-

lin, Spence, and Dixit-Stiglitz when Þrms sell multiple products. Both products and Þrms

are (horizontally) differentiated. We propose a general nested demand framework where

consumers Þrst decide upon a Þrm then which variant to buy and how much (the nested

CES is a special case) . We use it to determine the market�s biases when Þrms compete in

product ranges and prices. The market system attracts too many Þrms with too few prod-

ucts per Þrm: Þrms restrain product ranges to relax price competition, but this exacerbates

over-entry.
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I. Introduction

The economic analysis of the market provision of variety goes back to Hotelling [1929] and

Chamberlin [1933]. Hotelling was concerned with product selection for duopoly, whereas

Chamberlin was interested in free entry equilibrium. The Chamberlinian monopolistic com-

petition model was later examined rigorously by Spence [1976] and by Dixit and Stiglitz

[1977]. These papers, along with almost all of the subsequent literature have assumed that

each Þrm produces a single product. The intention of this paper is to broaden the discus-

sion of market performance by allowing Þrms to produce several products and developing a

tractable demand system for analyzing the problem.

The analysis of multiproduct Þrms introduces a further dimension to competition, that

of the product range. When a Þrm brings in a further variant to its product line, it attracts

more custom but at a cost of cannibalizing its existing products. The decision also has a

strategic effect that the Þrm may prefer to mitigate. This is that rivals may price more

aggressively in the face of tougher competition. These effects are not addressed under the

standard assumption of single-product Þrms. The product range also contributes a further

dimension to performance.

The performance analysis can be summarized quite succinctly. Firms hold back on prod-

uct ranges in order to relax price competition.1 Indeed, a broader product range makes the

Þrm more attractive to consumers and so provokes a more competitive price response. Hold-

ing back elicits instead a more comfortable pricing environment. However, this also means

that Þrm proÞtability is higher than it would be with more aggressive (larger) product ranges

1



so that the market signal for Þrms to enter (i.e., proÞt) is stronger than the social signal

(surplus contribution). This means that the market solution has too many Þrms, each one

with too narrow a product range.2

The reason why there has been little theoretical economic analysis of price competition

with multiproduct Þrms is that the problem is intrinsically difficult.3 To characterize proÞt-

maximizing prices for a Þrm selling m products requires simultaneously solving m Þrst-order

conditions, each of which involves the derivatives of the demands for m products. Likewise,

to Þnd the proÞt-maximizing product range for a Þrm necessitates Þnding not only the direct

effect on proÞt from an additional product, but also the equilibrium pricing response of all

other Þrms for all other products. Finally, the free-entry equilibrium is determined from the

condition that further entry be unproÞtable.

To make the problem tractable, we set out a speciÞc model and use symmetry assumptions

liberally for the demand functions (in the tradition of monopolistic competition).4 This

symmetry leads to a symmetric welfare benchmark. In our basic model, we parameterize

(horizontal) differentiation at two different levels. These correspond to differentiation of

products within the Þrm, and differentiation across the Þrms themselves. The demand for

any particular variant sold by a Þrm then depends on the two sources of product variety.

Corresponding to the two levels of differentiation, market performance can be gauged by

two quantities: the number of products per Þrm and the total number of Þrms. These two

measures are to be compared at the equilibrium to the corresponding magnitudes for the

social optimum.
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The demand model has considerable interest in its own right. Although we treat all

the variants produced by any Þrm as symmetric substitutes, and we assume symmetry in

the choice of which Þrm to buy from, the substitution pattern across variants produced by

different Þrms can be rather complex. We consider a general nested demand structure that

was rationalized by McFadden [1978]. The nested logit model was Þrst applied theoretically

by Anderson and de Palma [1992] to study the performance of multiproduct Þrms. It has also

been used in several empirical studies in industrial organization.5 Subsequently, Allanson and

Montagna [2003] analyzed the comparative static properties of the closely related nested CES

model as a description of consumer demand. Ottaviano and Thisse [1999] provide a careful

and thorough analysis of a representative consumer with a quadratic utility function that

generates a linear demand system.6 Despite differences in the underlying demand systems (all

products are symmetric substitutes in Ottaviano and Thisse [1999], while products produced

within a Þrm are closer substitutes than those across Þrms in Anderson and de Palma [1992])

some of the broader results are quite similar, although their symmetry assumption implies

that the optimal number of Þrms is only one.

The idea behind our nested demand model is that product selection can be split into a

two-stage process. For example, a consumer may decide on a wine appellation before homing

in on a particular chateau, or a music genre then a particular concert artist. In our context,

Þrst consumers choose a Þrm, then subsequently they choose a speciÞc product to buy from

that Þrm. When choosing a Þrm, consumers anticipate they will then optimally choose among

the products available, although at this stage they do not know exactly the characteristics
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of the products available (although they do know the distribution of the characteristics).

Think of restaurants: a consumer may not know exactly what is on the menu on a given

day, but she knows that she will choose optimally once she gets there, and she anticipates

her expected utility level.7 The two levels of differentiation in the model correspond to the

diversity across restaurants and the diversity within a restaurant�s menu.

In the basic model, we assume that each consumer buys one unit of one product. This

assumption makes it simple to carry out the welfare comparison because social surplus is

independent of the price level, and we can then directly compare market equilibrium with

the Þrst-best optimum solution. Later on we allow for downward sloping individual demand.

For this case, we compare the second-best (zero proÞt constrained) optimum to the equilib-

rium. The extension of the basic analysis is fairly straightforward, but it broadens the scope

considerably. This extension also encompasses the nested CES model. We also describe in

this section a class of generalized nested demand models that have a consumer theoretic

foundation with consumers making discrete choices of which product and how much to buy.

The structure of the paper is as follows. Section II provides an overview of the analysis.

In Section III, we introduce the demand function and the nesting structure. In Section

IV , we derive the social welfare function, establish symmetry, and characterize the Þrst best

optimum number of Þrms and the optimal variety offered by each Þrm. In Section V , we

compute the equilibrium game: Þrms decide Þrst whether to enter the market or not, then

how many products to offer, and Þnally how to price them. We then compare the market

solution and the optimal solution, and show that the market induces over-entry of Þrms and
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under-provision of variety per Þrm. In section V I, we generalize the result to the case of

variable individual consumption. Section V II concludes with some further discussion.

II. Overview

Let there be n Þrms, indexed i = 1...n, and let Firm i produce mi products, indexed

k = 1...mi. The demand for product ik (the kth product of Firm i) is given by

(1) Dik = NPiPk|i,

where N is the number of consumers in the market, Pi is the fraction of consumers buying

from Þrm i, and Pk|i is the fraction of consumers who choose product ik given that they have

selected Firm i. Costs per unit produced are constant at rate c, and the Þxed costs for Firm

i producing mi products are K (mi) = k0 + k1mi. The optimal allocation is symmetric, and

at a symmetric allocation, Pi will equal 1/n while Pk|i will equal 1/m.

We now sketch the key elements of the argument that follows. The reader may wish to

skip the rest of this section on the Þrst reading. Note that all the terms that are used here

are deÞned and discussed in detail below.

The optimum values of n and m are determined from costs and the consumer beneÞt

function that underlies the demand system. SpeciÞcally, the consumer beneÞt function may

be written as a weighted sum of the beneÞts from variety at each level, the two levels being the

product range and the Þrm. The relative importance of each level is described by weights σA

and σB that reßect the heterogeneity of the two levels. The key component beneÞt functions

are increasing and concave functions that are written as A(m) and B(n) respectively, and
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so depend on the amount of variety available at each level.

The market equilibrium is the outcome of a three-stage game involving entry, product

ranges, and prices. The equilibrium number of Þrms is determined by a zero proÞt condition,

so N
nm
(p− c) = K (m), where p is the price per unit. The equilibrium number of products

per Þrm is determined from a marginal proÞt condition that accounts for both the direct

effect of an extra product in the range and the strategic effect on other Þrms� prices. The

latter effect is negative because further products provoke more price competition from rivals,

which the Þrm wants to avoid. The former effect depends on the extra beneÞt to consumers

from more product variety, and so is proportional to A0(m): this link to the optimal problem

is what enables us to Þnd the direction of the bias in the market system.

The equilibrium mark-up is determined from the derivative of Pi when this is evaluated

at a symmetric solution. This mark-up is inversely proportional to Ω(n), where Ω(n) is a

third key component of the model. It, like B(n), is determined by the tastes underlying the

consumer demand function. Under symmetry, the marginal social beneÞt from a further Þrm

is proportional to B0(n) while the net revenue from an nth Þrm is proportional to 1 /nΩ(n)

(the constant of proportionality being the same). The comparison of the equilibrium and

optimum numbers of Þrms is then made possible by using an inequality proved in Anderson,

de Palma, and Nesterov [1995]; that B0(n) < 1 /nΩ(n) , implying roughly that the private

incentive to enter exceeds the social one. In the sequel, we ßesh out the details.
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III. Nested demand

Our model of choice is inspired from the nested logit model used in many econometric

applications (see e.g. Train [2003]). We model choice as a two-step procedure. First, a

consumer selects a Þrm (Þrms are synonymous with nests), then she buys one unit of one of

the variants that the selected Þrm sells.

Recall from (1) that the demand for product ik (sold by Firm i) is Dik = NPiPk|i, which

is written as the product of two fractions: the fraction of consumers buying from i and the

(conditional) fraction of those buyers who then choose the particular variant. This latter

fraction, Pk|i, is determined from a discrete choice model in the following manner. Once a

consumer has chosen Firm i, she draws a vector of match values, 31|i...3mi|i (one for each of

the Þrm�s mi variants), and chooses the variant for which the conditional utility (i.e., for

variant k given the choice of Firm i)

(2) uk|i = y − pik + σA3k|i,

is greatest. Here pik is the price of Firm i�s kth variant, σA ≥ 0 parameterizes the degree of

substitutability among i�s variants (for a given distribution of 31|i...3mi|i) and y is consumer

income.

TheN individuals are assumed to be statistically identical and independent (that is, their

preferences are the realization of the same probability distribution). The 3k|i are assumed

to be i.i.d. random variables (across variants and individuals) with zero mean and unit

variance, i = 1...n, k = 1...mi. Their common density function, f(.), is twice differentiable

and log-concave over a convex support I2 (that is, ln f(.) is concave).8 Since the individuals
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are statistically identical, the expected fraction of consumers selecting product k is equal

to the conditional probability that an individual, randomly chosen in the population (given

her previous choice of Firm i) selects product k. Therefore (1) represents the expected

demand for product ik. The conditional probability that an individual selects product k

given she chooses nest i is the probability that product k gives her the highest utility among

all alternatives in nest i. That is Pk|i = Prob{uk|i ≥ u(|i, 7 = 1...mi} for k = 1...mi and

i = 1...n, or:

(3) Pk|i ≡
Z
B(k|i)

miY
l=1

f (el) de1...demi .

Here the integral is taken over the set B (k|i) of realizations ¡e1, ..., emi¢ ∈ Imi
2 for which

choice k yields the largest utility from nest i:

B (k|i) ≡
½
e1, ..., emi : y − pik + σAek = max

l=1...mi

(y − pil + σAel)
¾
.

This expression can also be written as a one-dimension integral:

(4) Pk|i =
Z
I2

f(x)

miY
(=1
(6=k

F

µ
pi( − pik
σA

+ x

¶
dx,

where F (.) is the common cumulative distribution of 3k|i. To interpret this expression, notice

that F ((pi( − pik) /σA + x) in (4) is simply the probability that product ik is preferred to

product i7 when the match value for product ik is x. Given the i.i.d. assumption, the product

term in (4) is the probability that ik is the most preferred of i�s variants given a draw x.

Integrating over all possible x then gives the probability that ik is bought, conditional on

buying from i.
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The choice of Þrm is determined in a similar manner using the attractiveness of the various

Þrms. Let Vi denote the attractiveness of Firm i, measured as the expected consumer surplus

that a consumer selecting Firm i should expect. This means that consumers know how many

products the Þrm offers, and their prices, but they only know the distribution (but not the

actual realizations) of their valuations. Hence Vi is the expected value of the maximum of

the conditional utilities uk|i, i = 1...mi, so we can write

(5) Vi = y +

Z
I2

...

Z
I2

max
k=1...mi

(−pik + σAek)
miY
l=1

f(el)de1...demi
.

Moreover, since the function f is continuous, then the sufficient condition for differen-

tiability under the integral sign holds, and we have ∂Vi /∂pik = −Pk|i (see (3)). Note that

the domain of integration for demand, Pk|i, is the set of realizations
¡
e1, ..., emi

¢
such that

product ik is the most preferred, which is B (k|i). In summary, we have:

Lemma 1. The within-nest conditional choice probabilities are given by:

(6) Pk|i = −∂Vi /∂pik .

Note that (5) has all the properties of a (conditional) indirect utility function (see An-

derson et al., 1992), and that it is linear in income, y, so that the result in the Lemma is

effectively Roy�s Identity.

When all of i�s variants are priced at the same price, pi, then Vi reduces to9

(7) bVi = y − pi + σAA(mi),
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where

(8) A (mi) = mi

Z
I2

xf(x)Fmi−1(x)dx.

Since A (mi) is the expected value of the maximum of mi i.i.d. random variables, it is

an increasing and strictly concave function. This is because getting more draws raises the

expected value of maximum but at a decreasing rate.10 Thus A0 (mi) > 0 and A00 (mi) < 0.

In what follows we shall use a condition on the elasticity of A0 (mi):

ASSUMPTION A: Marginal intra-nest surplus is inelastic with respect to the product

range:

mA00 (m)
A0 (m)

≤ −1.

Note that this assumption holds for standard log-concave distributions such as the uni-

form and power functions, exponential, and the double exponential (in which case the elas-

ticity is −1). Notice that as long as this property holds, the results below still go through

even if the draws at the nest level are correlated instead of being i.i.d.

We can now describe the consumer�s choice of Þrm. Like variants, Þrms are also differ-

entiated. Brand name, Þrm location, waiting time, and quality of service all contribute to

Þrm differentiation. Consumer utility from choosing Firm i is assumed to be given by

(9) ui = Vi + σBεi, i = 1...n,

where σB ≥ 0 parameterizes the degree of substitutability across Þrms. We assume that

the εi are i.i.d. random variables with zero mean and unit variance with twice differentiable
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density function g(.), which is log-concave over its convex support I1. Hence,

(10) Pi = Prob{ui ≥ uj, j = 1...n} =
Z
I1

g(x)
nY
j=1
j 6=i

G

µ
Vi − Vj
σB

+ x

¶
dx,

where G (.) is the common cumulative distribution of εi (cf. (4) and (5)). The special case

where the random terms are double exponentially distributed at both levels corresponds to

the nested logit model treated by Anderson and de Palma [1992]. The framework considered

here allows for a broad palette of possible demand patterns at each level.

It is important for what follows in the equilibrium analysis to Þnd the derivative of (10)

evaluated where all the Vj�s are the same. This is given by

(11)
∂Pi
∂Vi

=
n− 1
σB

Z
I1

g2(x)Gn−2 (x) dx =
Ω (n)

σBn

where we have thus deÞned

(12) Ω(n) ≡ n(n− 1)
Z
I1

g2 (e)Gn−2 (e) de > 0.

We return to this key magnitude in the analysis of equilibrium. It will there turn out to be

inversely proportional to the equilibrium mark-up.

III(i). Properties of the demand system

The nested demand system has some interesting properties that are worth pointing out

before we proceed. As expected, the total demand addressed to Firm i (Pi) increases as Vi

increases and decreases as Vj increases (j 6= i). This implies that the Þrms themselves are

substitutes. Conditional on the choice of a Þrm, its products are also substitutes. These
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two substitution properties follow from the discrete choice structure used to generate the

demand for a Þrm and the demand for a product within a Þrm (see (2) and (7)).

The demand derivative for Firm i�s product k with respect to Firm j�s product h (recalling

Dik = NPiPk|i and using Lemma 1) is:

(13)
∂Dik
∂pjh

=
∂Dik
∂Vj

∂Vj
∂pjh

= N
∂Pi
∂Vj

∂Vj
∂pjh

Pk|i = −N ∂Pi
∂Vj

Ph|jPk|i ≥ 0, i 6= j.

Thus variants produced by different Þrms are substitutes.

For variants produced by the same Þrm, we have

(14)
∂Dik
∂pi(

= N

·
Pi
∂Pk|i
∂pi(

− ∂Pi
∂Vi

P(|iPk|i
¸
, 7 6= k.

The Þrst term is non-negative, whereas the second is non-positive.11 Conditional on choosing

Firm i, i�s variants are substitutes (Þrst term); however, when pil rises, Firm i becomes less

attractive. This decreases total demand for i�s variants and hence cuts into product k�s

demand. If the latter effect outweighs the former, variants sold by Firm i are complements.

Otherwise they are substitutes. We should stress that the possibility of complementarity

is is quite limited in the model: even when a Þrm�s products are complements, the Þrms

themselves are substitutes and so are the products produced by different Þrms.12

Complementarity can arise when the nest effect dominates, meaning that a price rise

deteriorates consumers� evaluations of the Þrm so much as to offset within nest substitution

into the other variants. If all goods are substitutes, then McFadden [1981] has shown that

under certain regularity conditions (see Anderson et al. [1992], Ch. 3 for details) the

demand system can be rationalized by a single-stage discrete choice random utility model
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with consumer taste heterogeneity described by a distribution of taste parameters across

products and individuals. The present approach uses a discrete choice random utility model

with two stages, the Þrst for the Þrm and the second for the particular variant.

Thus, if all variants are always substitutes (i.e., if (14) is always positive), then the

demand system does have a standard discrete choice representation.13 Otherwise it does not.

We shall show in Section 6 that the demand system is always consistent with a representative

consumer regardless.

III(ii). Consumer surplus

Just as Vi was interpreted as a conditional beneÞt function, the expected maximum of the

ui provides a utilitarian measure that we shall use as a consumer welfare measure. The

consumer surplus for the population of N consumers is deÞned the same way as in (5):

(15) CS = N

Z
I1

...

Z
I1

max
i=1...n

[Vi + σBei]
nY
j=1

g(ej)de1...den,

with Vi given by (5). We show below how (15) enables us to recover the demand system.

Using an argument parallel to that substantiating Lemma 1, we can establish a parallel

property:

Lemma 2 The demand addressed to Firm i is given by:

Di = NPi =
∂CS

∂Vi
i = 1...n

and the demand for product ik is

Dik = −NPiPk|i = −∂CS
∂pik

, k = 1...mi, i = 1...n.
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Indeed, the Þrst relation is derived just as before, noting that the derivative of (15) with

respect to Vi uncovers the mass of consumers who prefer i to the other nests. The second

expression then follows from the chain rule and Lemma 1:

∂CS

∂pik
=
∂CS

∂Vi

∂Vi
∂pik

= −NPiPk|i = −Dik.

Once more, these demands are consistent with Roy�s identity and the reason (as shown below

in Proposition 4) is that (15) is a valid indirect utility function.

If Firm i sells all its mi variants at the same price and if all the Þrms have the same

attraction (i.e. �Vi = V , i = 1...n), then, following the same procedure as we did for V , we

have CS = N [V + σAB(n)] where

(16) B(n) = n

Z
I1

xg(x)Gn−1(x)dx,

and B(.) is increasing and concave in n (i.e., B0 (n) > 0 and B00 (n) < 0). Parallel to

Assumption A, we now suppose:

ASSUMPTION B: Marginal inter-nest surplus is inelastic with respect to the number

of nests:

nB00 (n)
B0 (n)

≤ −1.

In the symmetric case (same prices and same number of variants per Þrm) the expression

(15) reduces to a form that explicitly recognizes the contribution of m and n to consumer

surplus:
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(17) CS = N [y − p+ σAA(m) + σBB(n)] .

One interpretation of the demand model uses the choice of restaurant meal as an example.

The selection of a particular dish at a particular restaurant can be seen as the outcome of

a two-stage process. The Þrst stage is the choice of restaurant, and the second is that of a

speciÞc dish offered there. The consumer knows that when she gets to the restaurant, she

will order the dish that pleases her most (as per (2)). However, before getting there she

does not know precisely what is on the menu that day (but she does know her distribution

of valuations of dishes). The valuation she attributes to a speciÞc restaurant comprises

an individual-speciÞc match component (σBεi in equation (9)) plus the expected value of

choosing the best dish once gets there (Vi).

IV. Welfare analysis

On the cost side, let K(mi) = k0 + k1mi denote the Þxed costs of a Þrm with mi variants,

with k0 therefore the Þxed cost per Þrm. Average variable production costs for Firm i

are constant and given by c per unit. These cost assumptions can correspond to a single

production line which must be closed down (to alter speciÞcations) to switch production to

a different variant: the more often the line is closed down to switch, the bigger the cost.14

The welfare maximand is assumed to be the sum of consumer surplus and Þrm proÞts.

The social surplus analysis is simpliÞed using prices to decentralize the optimum: clearly

marginal cost pricing does the trick. We show in Appendix 1 that optimality requires that
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each Þrm produces the same amount of each of its variants and that all product ranges must

be the same size. Hence each Þrm produces the same quantity of each of m products. This

renders the welfare function, W , quite simple, as the following result summarizes:

Proposition 1 The social optimum entails each Þrm producing the same number of vari-

ants, m, and producing an equal quantity, N/mn, of each variant. The welfare function

is

(18) W (m,n) = N [y + σAA (m) + σBB (n)]− nK (m)− cN.

We can now determine the optimal values of m and n.

IV(i). Optimum number of Þrms and variety

Given Proposition 1, the Þrst-order condition for the optimal choice of m implicitly deÞnes

the locus mo (n) which is the optimal product range for a given number of Þrms. Thus mo

solves15 ∂W (m,n) /∂m = 0, or

(19) NσAA
0 (mo)− nk1 = 0.

The slope of this locus is

(20)
dmo

dn
=

k1
NσAA00(mo)

< 0,

which is necessarily negative since A00 < 0. The larger the number of Þrms, the more narrow

the desired product range of each one because more Þrms can substitute for range size.

Likewise, the Þrst-order condition for the optimal choice of n implicitly deÞnes the
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locus no (m) which is the optimal number of Þrms for a given product range and solves

∂W (m,n) /∂n = 0, or

(21) NσBB
0 (no)−K (m) = 0.

The corresponding derivative is

(22)
dno

dm
=

k1
NσBB00(no)

< 0,

where the negative slope follows from the concavity of B (.).

The loci mo (n) and no (m) (see equations (19) and (21)) are illustrated in Figure 1. The

intersection of the two loci is the social optimum.

Insert here Figure 1: The optimal number of Þrms and product ranges.

In the Figure, we have drawn the curve mo (n) as more shallow than no (m) around the

intersection point. We now argue that this relation must hold under our assumptions. From

(20) and (22), this slope condition is

(23)
k1

NσAA00(mo)
>
NσBB

00(no)
k1

.

Now, this is also the condition that the determinant of the matrix of second derivatives of

W be strictly negative. Since (19) and (21) are strictly decreasing inmo and no, respectively,

the Hessian ofW is negative deÞnite if the inequality above holds. Thus, if (23) holds at any

intersection of the two loci, then since the loci are continuous functions, we know that they
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can only intersect once and that this unique intersection point must be a local maximum.

The solution does not involve either the number of Þrms nor the product range size tending

to inÞnity since the marginal beneÞt from each source of diversity goes to zero as n or m get

large enough while marginal costs are strictly positive. The solution does not involve either

value going to zero as long as the corresponding costs are low enough, which we assume.

Therefore there is an intersection of the two loci, it is unique, and constitutes a global

maximum of W (m,n) if (23) holds there. For (23) to hold at any intersection of the two

loci, then it must be that (19) and (21) hold, so that we can use these relations to substitute

out the µ�s and write the desired condition as

(24)
moA00(mo)

A0(mo)
<

µ
mok1
K (mo)

B0(no)
noB00(no)

¶
.

DeÞning ηA0 as the (absolute value of the) elasticity of A
0 and similarly for ηB0 and ηK

= k1m
K(m)

< 1, we can rewrite this inequality as:

ηA0 >
ηK
ηB0
.

Assumptions A and B imply ηA0 ≥ 1 and ηB0 ≥ 1. The inequality then must hold since

ηK < 1 (marginal cost for increasing the product range is lower than average cost).

Hence, (19) and (21) characterize the unique global maximum of (18), and via Proposition

1, of the social welfare. To summarize:

Proposition 2 Under Assumptions A and B, the social optimum number of Þrms and the

optimum variety are the unique positive solution of (19) and (21).
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When σA rises, the mo (n) locus shifts up in Figure 1 while the no (m) locus remains

unchanged. Thus a greater preference for variety within the Þrm leads to larger product

ranges which leads to fewer Þrms since the two dimensions of diversity are substitutes.

Conversely, the case of single product Þrms arises when σA is small enough. A similar

analysis implies that the optimal number of Þrms decreases as σB decreases but that range

size rises. For σB low enough there is optimally a single Þrm on the market.

The comparative static properties with respect to market size, N , and cost parameters,

also involve simple shifts of the loci in Figure 1. They are quite intuitive and are left to the

reader.

V. Market equilibrium

We are interested in characterizing the symmetric equilibrium at which ne Þrms each produce

me products.16 We proceed in two steps. First we consider the symmetric equilibrium choice

of product ranges for a given number of Þrms, me(n). Then we discuss the equilibrium

number of Þrms, as determined by the zero proÞt condition, when all Þrms have the same size

of product range. This gives the ne(m) locus. Throughout we ignore the integer constraint

and treat both n andm as continuous variables (as in the previous section). The intersection

of the ne(m) and me(n) loci gives the equilibrium.

V(i). Equilibrium price

The equilibrium is that of a three-stage game. In the Þrst stage, Þrms enter the market.

In the second stage they choose product ranges, and in the third stage they choose prices,
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which are the same for all the products of any Þrm.17 At each stage they internalize the

effects of their decisions on the subsequent sub-game equilibria. In the last (price) stage, if

all Þrms produce the same number of variants, m, and all other Þrms charge the same price

for all their variants, then the inter-Þrm choice probabilities are independent of m, so that

proÞt is

πi = N (pi − c)Pi( �Vi, �V−i)−K(m),

where the second argument in Firm i�s choice probability function, �V−i, denotes the vector of

all other expected surpluses, given that each Þrm charges the same price for all its variants.

The candidate symmetric equilibrium price satisÞes:

∂πi
∂pi

¯̄̄̄
Sym

= N (pi − c) ∂Pi(
�Vi, �V−i)

∂bVi ∂bVi
∂pi

¯̄̄̄
¯
Sym

+
N

n
= 0.

Using (11) and recalling ∂bVi /∂pi = −1, the equilibrium price is given explicitly by:

(25) p (n) = c+
σB
Ω(n)

,

where Ω(n) is deÞned in (12).

Thus the equilibrium price is a simple mark-up that depends only on the degree of Þrm

heterogeneity, σB, and the number of Þrms, n. Since Ω (n) is increasing under log-concavity

of g (.) (see Anderson et al. [1995]), the price of each Þrm�s product range falls the more

competing Þrms there are. Note that the equilibrium price (25) is independent of m since

A(mi) is the same for all Þrms. This is because the product range effect cancels out in a

cross-Þrm comparison of attractiveness.
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The quantities Ω(n) and B0(n) depend on the density function g (.) and satisfy the fol-

lowing property.

Lemma 3 (Anderson, de Palma, and Nesterov [1995]). If the density function g (.) is

log-concave, then nΩ(n)B0(n) < 1.

Anderson, de Palma, and Nesterov [1995] actually show that18

B (n)−B (n− 1) =
Z
I1

[1−G (ε)]Gn−1 (ε) dε ≤ 1

nΩ(n)
.

Since B (.) is strictly concave, the left-hand-side exceeds B0 (n) and so the inequality given

in the Lemma above follows immediately.

V(ii). Equilibrium versus optimum varieties

We Þrst determine the equilibrium product range, for n Þxed. Then, we consider the free

entry equilibrium. In the product range stage, suppose Þrm i produces mi variants while all

other produce m variants each. Firm i�s proÞt is πi = N (pi − c)Pi(mi, m̄; pi, p̄) − K(mi),

where K (m) = k0 + k1m. Taking the derivative with respect to mi we have

(26)
dπi
dmi

= N (pi − c)
µ
∂Pi
∂mi

+
∂Pi
∂p̄

dp̄

dmi

¶
− k1,

where dp̄/dmi denotes the change in the equilibrium price set by all other Þrms as Firm i

increases its product range. Now, noting that ∂Pi
∂mi

= −σAA0(mi)
∂Pi
∂pi
, and that ∂Pi

∂p̄
= −∂Pi

∂pi
,

so that:

µ
∂Pi
∂mi

+
∂Pi
∂p̄

dp̄

dmi

¶
= −∂Pi

∂pi

µ
σAA

0(mi) +
dp̄

dmi

¶
.
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Using (pi − c) ∂Pi∂pi
+Pi = 0 (i.e. the Þrst-order condition for pricing) and evaluating equation

(26) at a symmetric equilibrium for the equilibrium choice of variety, denoted by me yields:

(27) NσAA
0(me) +N

dp̄

dmi
− nk1 = 0.

This equation characterizes the me (n) locus. In comparison with equation (19), the only

difference between the equilibrium and the optimum is the term Ndp/dmi which can be

interpreted as a strategic effect on equilibrium prices. It is shown in Appendix 2 that this

term is negative.

Lemma 4. Rivals� equilibrium prices fall as Firm i boosts its product range: dp/dmi < 0.

The equilibrium product range for a Þxed number of Þrms, me(n), is therefore smaller

than the optimum one. In terms of Figure 1, the me(n) locus is below the mo(n) locus. As

seen from the analysis above, the difference is completely attributable to a strategic effect

that competing Þrms internalize. Adding a variant leads to more intense competition and

lower prices of rivals� variants. At the margin, Þrms avoid too much provocation by holding

back on their product ranges.

Equation (27) shows that the equilibrium product range choice in our model differs from

the optimum level only because (and insofar as) the rivals drop their prices in response

to a broader range. Indeed, were there to be no competitive response, there would be no

discrepancy between the optimum and equilibrium product choice levels (for a given number

of Þrms).19 The reason is as follows. In our two-stage model of consumer choice, consumers

base their decision of which Þrm to patronize based on the perceived attraction of that Þrm
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in terms of the expected utility it delivers. With that in mind, consider now the Þrm�s

decision to improve its attraction (which is akin to its �quality� for consumers) through

expanding its product range. The Þrm is able to offset any such attraction change with a

corresponding rise in its common product price that leaves the initial consumer base intact

(more exactly, dpi/dmi = σBA
0 (mi) by (7)). This means that the Þrm can fully extract

the monetary beneÞt of the improved attraction. Thus, if there were no rivals� reaction, it

would optimally choose the product range since it appropriates the full social beneÞt (and

pays social cost too).

Now consider the equilibrium number of Þrms for given symmetric product ranges, m.

This is determined by the zero proÞt condition:

π =
N

n
(p(n)− c)−K(m) = 0,

Using (25), the equilibrium number of Þrms, ne, of Þrms satisÞes:

NσB
neΩ(ne)

−K(m) = 0.

This equation characterizes the ne (m) locus and is directly comparable with (21) for the

optimal number of Þrms. The ne(m) locus lies right of the no(m) locus if nΩ(n)B0(n) < 1.

This is precisely the condition in Lemma 3.

Insert here Figure 2: Equilibrium and optimum product variety

The consequent results are illustrated in Figure 2, where we see that the optimum number

of Þrms is smaller than the equilibrium number and the optimum product variety is larger
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than the equilibrium one. Anderson, de Palma, and Nesterov [1995] established over-entry of

single-product Þrms: the special assumptions made here allow us to establish this property

more broadly.20 We summarize our results in

Proposition 3 Suppose that the market equilibrium is that of a three-stage entry-product

range-price game. Given unit demand by consumers, the market equilibrium involves too

many Þrms and too few products per Þrm with respect to the optimum.

Since Þrms hold back on product ranges to lessen price competition, prices stay excessively

high so that proÞts exceed the social value of a Þrm and too many Þrms enter the market.

Note that if a Þrm�s own products are complements, then it may happen that the optimum is

to have a single Þrm, while the equilibrium may have several Þrms. For example, the nested

logit model of Anderson and de Palma [1992] exhibits these properties. At a symmetric

equilibrium, using the demand derivative (14) under the nested logit model speciÞcation,

products within a nest are complements if and only if

σB
n

n− 1 < σA.

The social optimum is one Þrm if σB < σA (see Anderson and de Palma [1992]) However,

the equilibrium may involve several Þrms.21

It is noteworthy that the outcome of the Proposition above is somewhat mitigated if

product range choices are made simultaneously with price choices. In such a two-stage game

(entry, then range and price together), then there is no distortion in the range choice for a

given number of Þrms. This is because there is no internalized anticipated price reaction
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from rivals, and so the ne (m) locus coincides with the no (m) locus. The other loci remain

unaltered. Referring to Figure 2, this means that the equilibrium number of Þrms is still

higher than the optimal one, and the equilibrium range is still too high, but the discrepancy

in both dimensions is smaller. We summarize this discussion as

Corollary 1 Suppose that the market equilibrium is that of a two-stage entry then product

range and price game. Given unit demand by consumers, the market equilibrium involves

too many Þrms and too few products per Þrm with respect to the optimum. However, both

dimensions are closer to the optimum than under the three-stage game of the previous Propo-

sition.

VI. Variable consumption

The analysis so far has treated unit demand by consumers insofar as each consumer has

been assumed to buy one unit of the preferred good independently of the price level. In

this section, we broaden the vista to allow the quantity demanded to decrease with price.

We retain the discrete choice assumption at the level of choice of good to buy, but we allow

the quantity of that good bought to decrease with price. We make extensive use of Roy�s

identity in the demand relations. Our extension allows us to pick up the classic case of CES

preferences here extended to the nested CES.

The basic demand structure is as above except that we write demand asDik = Nq (pik)PiPk|i,

where the function q (.) is to be interpreted as a conditional demand function (conditional

on choosing product ik) and the probability components are much as before.
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The extension works as follows. Let the conditional (indirect) utility of consumer buying

variant (ik) be uik = y+v (pik)+σAεik, where v (pik) is the conditional surplus function. This

surplus function is decreasing and convex. Applying Roy�s identity yields the conditional

demand as q (pik) = −v0 (pik).22 Given that the consumer who selects Firm i will choose

the variant ik that maximizes uik, the conditional probability of choosing good ik in nest i

when all intra-nest prices are equal to pi is just Pk|i = 1/mi and the expected demand for

the variants sold by Firm i is just Nq (pi)Pi. Here, Pi is determined by the attraction of the

various nests, so that Pi = Prob{Vi + σBεi ≥ Vj + σBεj, j = 1...n}, as before, or:

Pi =
Z
I1

g(x)
Y
j 6=i
G

µ
Vi − Vj
σB

+ x

¶
dx, i = 1...n,

where Vj = y + v (pj) + σAA (mj), when Firm j set the same price pj for all of its variants.

We return to these expressions below when we Þnd the market equilibrium.

VI(i). A Representative Consumer Interpretation

The representative consumer approach provides an alternative theoretical underpinning to

the demand model. Representative consumer models (with different structural assumptions)

have been previously used by Spence [1976] and Dixit and Stiglitz [1977] to compare optimum

with equilibrium product diversity when Þrms sell but one product each.

Proposition 4 The nested demand model with variable consumption is consistent with the
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preferences of a representative consumer whose indirect utility function is given by:

CS = N

Z
I1

...

Z
I1

max
i=1...n

[Vi + σBei]
nY
j=1

g(ej)de1...den,

where

Vi = y +

Z
I2

...

Z
I2

max
k=1...mi

(v (pik) + σAek)

miY
l=1

f(el)de1...demi
.

Proof.We need to show that the matrix of cross-derivatives of the indirect utility func-

tion, CS, is symmetric, and that it is quasi-convex in prices. The Þrst property follows since

∂CS/∂pjh = NPj∂Vj/∂pjh and ∂Vj/∂pjh = −q (pjh)Ph|j, so ∂CS/∂pjh = −Djh. (Indeed, the

cross-derivative is ∂2CS/∂pjh∂pik = q (pjh) q (pik)Ph|jPk|i∂Pi/∂Vj, from which symmetry is

apparent since in discrete choice models ∂Pi/∂Vj = ∂Pj/∂Vi.) This property is equivalent to

the symmetry of the Slutsky matrix for the representative consumer. The second argument

follows since v (.) is convex and therefore V (.) is convex in prices (this is a property of the

maximum operator: see also McFadden [1981]). Moreover, the function CS (.) is then convex

in prices for the same reason. The demand model is therefore consistent with the preferences

of a representative consumer whose indirect utility function is given by CS above.

Two special cases are noteworthy. First, if q (.) = 1, corresponding to the unit demand

speciÞcation, the representative consumer utility reverts to (15) and thus to the model of

the preceding Sections. Second, if q (p) = − ln p, conditional demand is unit elastic and the

model reverts to the nested CES when the error structure is that of the nested logit. Indeed,

Anderson, de Palma, and Thisse [1992] use a similar procedure to disaggregate the standard

CES representative consumer model, while Verboven [1996] does likewise for the nested logit

and generalized CES models. The comparative static properties of the representative con-
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sumer model with nested CES preferences are discussed in detail in Allanson and Montagna

[2003] for monopolistic competition. These authors are particularly interested in product

shake-out and the implications for the product life cycle.

VI(ii). Optimum and Equilibrium

We now Þnd the optimum allocation. Under symmetry, all of the V 0s are equal and the

social surplus is given by

W = N [y + v (p) + σBB(n) + σAA(m)] + nπ.

We look for a second-best optimum such that Þrms are constrained to make zero proÞts.

This means that aggregate net revenues minus the total set-up cost is zero or

(28) nπ = N (p− c) q (p)− nK(m) = 0.

The corresponding Lagrangian L (m,n, p, λ) is:

L=N [y + v (p) + σAA(m) + σBB(n)] + (1 + λ) [N (p− c) q (p)− nK(m)] ,

where λ denotes the Lagrangian multiplier associated to the aggregate zero-proÞt constraint.

The Þrst-order condition for the locus mo (n) is given by ∂L /∂m = 0 , or:

(29) NσAA
0 (mo) = (1 + λ)nk1.

The locus no (m) is given by ∂L /∂n = 0 , or
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(30) NσBB
0(no) = (1 + λ)K(m).

The pricing condition is given by ∂L /∂p = 0 , or, recalling q (pik) = −v0 (pik),

(31) (1 + λ) =
q (p)

q (p) + (p− c) q0 (p) ,

and the Þnal Þrst order condition is (28).

We show in Appendix 3 that both relations hold just as in Figure 2 for the extension to

variable (price-sensitive) individual demand. This implies that the conclusion of the previous

section applies to this case, with the qualiÞcation that the welfare benchmark is the second

best subject to a zero-proÞt constraint. In summary:

Proposition 5 Suppose that the market equilibrium is that of a three-stage entry-product

range-price game. In the nested demand model with variable consumption, the market equi-

librium involves too many Þrms and too few products per Þrm with respect to the zero-proÞt

constrained second-best social optimum.

VII. Conclusions

In Anderson and de Palma [1992] we proposed the nested multinomial logit model as a

framework to describe the performance of competing multi-product Þrms offering a range of

products. In this paper we have pursued two main objectives.

First, we have laid out a general nested consumer choice structure that appeals to con-

sumer choice as a two-step procedure. The asymmetric version of our choice model has
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potential for future empirical work for describing product groupings insofar as it retains the

appeal of the basic nesting structure of the nested logit but without being hamstrung by the

IIA property within nests. A further contribution that may help future empirical applica-

tions is that we have shown how this nesting structure can be extended to allow for purchase

of a variable amount of the good in question. Indeed, structural empirical models are now

branching out from studies of cars � where the single unit per household is quite tenable �

to consider industries where it is not. Importantly, the nested CES oligopoly model is one

that is covered by our extended nested framework.

Second, we have applied the general nested structure to the performance question. This

has resulted in us uncovering broad performance results, of which our earlier nested multino-

mial analysis was a special case. The simple graphical treatment underscores these results.

Indeed, we have emphasized in this paper that there is a systematic market bias towards

over-entry of Þrms and too narrow product lines. The latter effect provokes and exacerbates

the former: because product line competition is strategically restricted to moderate price

competition, proÞts are kept higher than is optimal. This in turn encourages and exacer-

bates the excess entry that is the hallmark of models on optimal and market variety for

single product Þrms.

Our analysis follows the Chamberlin [1933] tradition in its interest in comparing equilib-

rium and optimal diversity, but there is another parallel that bears developing. Chamberlin

looked at single-product Þrms and assumed a production cost structure that is familiar in

standard perfectly competitive analysis, a U-shaped average cost function. He noted that his
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�tangency condition� of the perceived demand (dd) with average production cost implied

that production is below minimum efficient scale, namely the �excess capacity� theorem.

He then noted that this conÞguration may be close to the optimum because a preference

for product variety implies that production efficiencies ought not be exhausted. Instead,

production at a lower scale enables more varieties to be produced, albeit at a higher price

per unit bought. We have concentrated on the product range of multiproduct Þrms, but in

the text have assumed that production costs are constant as a function of both output per

variety and the number of varieties. The more interesting of the two generalizations is to

allow the cost function for varieties to be U-shaped as a function of mi.

That is, suppose now that K (m) /m has the classic U shape as a function of m (with

K 0 (m) passing through its minimum).23 Notice Þrst that the (zero proÞt constrained) opti-

mum solution has the range size below the minimum average cost if consumers value prod-

ucts produced by different Þrms more than an extension in the range of a given Þrm at the

margin.24 The equilibrium relation then looks similar to a Chamberlinian tangency, although

his demand curve is replaced by an average revenue curve per product. This slopes down

because of the cannibalization effect and the property that a larger range toughens the com-

petition. This tangency equilibrium is at a lower range level than the optimal range by the

result we have emphasized that Þrms� keep their ranges too narrow.

Our equilibrium analysis also yields some predictions for empirical regularities. For ex-

ample, larger markets (higher N) typically attract more Þrms in standard models of product

differentiation (and in actual markets, comparing across cities or countries). This source of
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higher product diversity underscores a key source of gains from trade in the context of glob-

alization. The endogenous product ranges in the current analysis provide a further source

of potential gains from market expansion. Larger markets provide the incentive for Þrms to

bring in broader product ranges (for given Þrm numbers) since the Þxed costs of bringing in

more products is spread over a broader consumer base. Larger markets also lead more Þrms

to enter, for any given product range size. In terms of Figure 2, both curves shift out with

N . Thus one would expect both wider product ranges and more Þrms in larger markets, so

two types of increased variety.

Our over-entry result bears comment. Our solution concept uses free-entry equilibrium

with many Þrms driving proÞt to zero. In markets that are small relative to costs of Þrm

and product introduction, there is room for more complex strategic behavior with respect to

entry deterrence. In particular, it was noted in the text that broader product ranges give rise

to more intense competition. For entry deterrence, this is a good thing (see also Schmalensee

[1979]). Indeed, insofar as one might then expect fewer Þrms, and more products per Þrm

than our current solution, this type of deterrence equilibrium may be closer to the social

optimum than the free entry equilibrium we consider. The deterrence solution remains an

open research question.

Our model is not set up to address mergers directly, but the analysis does provide some

important pointers that could be developed in future research. The framework may be useful,

in its asymmetric version, for research on mergers. To Þx ideas, let the market status quo be

the long-run equilibrium of our paper, i.e., a number of Þrms making zero proÞts and with
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equally sized product ranges. Then suppose that two Þrms were to merge. What happens

next depends on the degree to which Þxed costs are sunk, and how inheritable are product

differences across Þrms.

Suppose Þrst that no costs are sunk, and that when a Þrm takes over another it does not

gain the product differentiation advantage of its rival (i.e. it does not inherit the Þrm speciÞc

differentiation of the other Þrm so that after merger all its products offered are perceived

as belonging to the same nest). Taken together, these assumptions mean that there are

no �assets� taken over � the acquiring Þrm cannot produce variants it could not produce

before, nor has there been any previous investment in products. This means that a Þrm that

takes over another in this scenario must effectively �start afresh.� This implies that the new

post-merger equilibrium is just as if n − 1 Þrms compete. Therefore product ranges for all

Þrms are those of the n− 1 Þrm equilibrium, and are equal for all Þrms. They rise for the

non-merging Þrms, and the merging Þrm�s range is less than the sum of the two previous

product ranges. For large n, the merger leads the merging Þrm to shed virtually half of the

product range of its parents. The FTC voiced a similar concern that the proposed merger

between EMI and Time-Warner would cause these Þrms to invest in fewer artists.

In this context, a merger is just like closing down a Þrm, and the result is similar to those

analyzed in the literature on the Cournot merger paradox, following Salant, Switzer, and

Reynolds [1983]. Indeed, the analogy with the Cournot equilibrium goes further. We can

think of product variants in the current model as analogous to units of output, and as such

are strategic substitutes (a property shared with the Cournot speciÞcation). Furthermore,
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the proÞt of each Þrm decreases with the product range of each rival.

The above conclusions about substantial product range reduction are tempered if Þxed

costs are predominantly sunk and if product differences are inherited post-merger. With

high sunk costs, the merged Þrm is unlikely to discard assets (products) that have already

been paid for, although there still exists some strategic advantage to doing so in relaxing

price competition. Similarly, larger inherited product differences mean more differentiation

and so less incentive to discard products post-merger. Even if no products are discarded,

we still expect all prices to be higher post-merger. The merging Þrm will tend to internalize

the effects of price rises in increasing the demand for its own other products, and the rivals�

response is to raise prices since prices are strategic complements (see Deneckere and Davidson

[1985] for a single-product Þrm version of this logic).

There is, however, no presumption that the reduction in the number of products that

follows a merger is necessarily welfare reducing. There are at least cases where welfare

improves. Basically, starting from a free entry equilibrium, we know that there are too many

Þrms and too few products each. A merger of two Þrms helps in both dimensions. Indeed, the

analysis underlying Figure 2, shows that the iso-welfare cross the no(m) locus horizontally

(with a zero slope) and the mo(n) locus vertically (i.e. with an inÞnite slope). This suggests

that welfare increases along the me(n) locus when the number of Þrms is marginally reduced

below the equilibrium number.
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Appendix 1: Proof of Proposition 1.

Assume that Firm i has product range mi. Optimality requires that it charges the same

price, denoted pi, for all its variants. Under symmetry, Vi reduces to bVi = y − pi + σAA(mi)

(see (7)).

Using (15) we can write consumer surplus as CS = CS
hbV1...bVni and we recall from

Lemma 2 that ∂CS/∂bVi = −∂CS/∂pi = Di. Suppose the total number of variants is Þxed
at M =

Pn
i=1mi. The choice of the number of variants per Þrm is given by the solution to

the following Lagrangian:

max
{m1...mn}

CS
hbV1...bVni+ nP

i=1

(pi − c)Di

−
nP
i=1

K(mi) + µ

·
M −

nP
i=1

mi]

¸
Note Þrst that the optimal choice of prices requires

nX
i=1

(pi − c) ∂Di
∂pj

= 0, j = 1..n.

This is clearly satisÞed by marginal cost pricing.25 Now note that

∂CS
hbV1...bVni
∂mj

=
∂CS

∂bVj σAA0 (mj) = σAA
0 (mj)Dj.

Given that prices are optimally chosen, and treating the mi as perfectly divisible, the Þrst-

order conditions to the maximization problem yield

(*) σAA
0 (mj)Dj +

nX
i=1

(pi − c) ∂Di
∂mj

− k1 = µ.

Since mark-ups are identical, the middle term on the LHS is zero, and thus σAA0 (mj)Dj −
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k1 = µ, j = 1...n. This implies that mj = mi = m, i, j = 1...n, since A(.) is concave and Dj

is increasing in mj. Q.E.D.

Appendix 2: Proof of Lemma 4.

We show here that dp̄/dmi < 0, i.e. that competitors decrease their prices p̄ as a deviant

Þrm (Firm i) increases its product range, mi. The Þrst-order conditions deÞning the price

sub-game are

(A1) (pj − c) ∂Pi
∂pj

+ Pj = 0, j = 1...n.

For the deviant Þrm we have

(A2) Pi =
Z
I1

f(x)F n−1(α+ x)dx,

where α ≡ [A(mi)−A(m̄) + p̄− pi]/σA, the relative attractiveness of Þrm i. We henceforth

set σA = 1 to ease clutter. Note also that

(A3)
∂Pi
∂pi

= −(n− 1)
Z
I1

f(x)f(α+ x)Fn−2(α+ x)dx.

For the other Þrms, we must evaluate Pj and ∂Pj/∂pj at a symmetric common price, p̄, so

(A4) Pj = P =
Z
I1

f(x)F n−2(x)F (−α+ x)dx
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and

(A5)
∂Pj
∂pj

(p̄) = −
Z
I1

(n− 2)f2(x)F n−3(x)F (x− α) + f(x)Fn−2(x)f(x− α)ds

Note this is not the derivative of (A4) since (pi, p̄) should be the Nash equilibrium price

sub-game stemming from (mi, m̄).

To Þnd dp̄/dmi, we totally differentiate the two types of (A1) - for Þrm i and for a

representative Þrm k 6= i. DeÞne

(A6) h(pi, p̄,mi) = (pi − c) ∂Pi
∂pi

+ Pi = 0

and

(A7) g(pi, p̄,mi) = (p̄− c) ∂Pk(p̄)
∂pk

+ P = 0,

where all arguments are then to be evaluated at a symmetric solution, mi = m̄ and pi = p̄.

From (A6) and (A7) we have

(A8)
dp̄

dmi
=

∂g
∂pi

∂h
∂mi

− ∂g
dmi

∂h
∂pi

∂h
∂pi

∂g
∂p̄
− ∂g

∂pi

∂h
∂p̄

.

The denominator is the product of own effects minus the product of cross effects, which we

assume positive corresponding to the standard stability condition. Now, ∂g
∂pi

= − ∂g
∂α
and
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∂g
∂mi

= A0(mi)
∂g
∂α
, so we wish to show that ∂g

∂α
(−A0(mi)

∂h
∂pi
− ∂h

∂mi
) < 0. From (A6), the term

in brackets is simply −A0(mi)
∂Pi
∂pi
> 0, so it suffices to show that ∂g

∂α
< 0. From (A7) we have

(A9)
∂g

∂α
= (p̄− c)

∂
³
∂Pk(p̄)
∂pk

´
∂α

+
∂P
∂α
.

We can use the Þrst order condition (A7) to simplify the remaining terms so that it suffices

to show that

(A10) − P
∂Pk(p̄)
∂pk

∂
³
∂Pk(p̄)
∂pk

´
∂α

+
∂P
∂α

< 0.

Now, evaluated at a symmetric equilibrium, (pi = p̄, mi = m̄), P = 1/n and (see (A4) and

(A5))

∂Pk(p̄)
∂pk

=
1

(n− 1)
∂P
∂α

= −(n− 1)
Z
I1

f2(x)Fn−2(x)dx

Furthermore, from (A5) we have

∂
³
∂Pk(p̄)
∂pk

´
∂α

¯̄̄̄
¯̄
α=0

=

Z
I1

(n− 2)f3(x)Fn−3 + f 0(x)f(x)F n−2(x)dx,

so (A10) becomes

(A11)

R
I1
[(n− 2)f3(x)Fn−3(x) + f 0(x)f(x)F n−2(x)] dx <

n(n− 1)
hR
I1
f2(x)F n−2(x)dx

i2
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To prove (A11), recall that log-concavity of f (·) implies that Pi is log-concave. The latter

condition implies that [∂Pi/∂α] /Pi is decreasing in α, or, using (A2) and (A3), this implies

that the expression

(n− 1) R
I1
f(x)f(α+ x)Fn−2(α+ x)dxR

I1
f(x)Fn−1(α+ x)dx

is a decreasing function of α. Evaluating the derivative at α = 0 means that

(n−1)
n

R
I1
[(n− 2)f3(x)Fn−3(x) + f 0(x)f(x)F n−2(x)] dx

−(n− 1)2
hR
I1
f2(x)F n−2(x)dx

i
< 0.

This condition is equivalent to (A11). Q.E.D.

Appendix 3: Proof of Proposition 6.

Continuing the analysis from the text, we Þrst need to derive the conditions (analogous

to those for the optimum) for the equilibrium. The proÞt of Firm i is

πi = N (pi − c) q (pi)Pi −K (mi) .

The optimality condition for the number of products offered by Firm i is:

dπi
dmi

= N (pi − c) q (pi)
·
∂Pi
∂mi

+
∂Pi
∂V

∂V

∂mi

¸
− k1,

where V denotes the common attraction of each other Þrm. Note that V incorporates

the sub-game equilibrium prices ensuing from the product range game. Using an argument
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analogous to that in Appendix 2, ∂V
∂mi

is positive: rival Þrms decrease their equilibrium prices

(as so raise their attractions) when Firm i increases its product range. Note too that the

expression for dπi
dmi

also uses the envelope theorem in the fact that pi is optimally chosen

by Firm i in the pricing sub-game. Now, ∂Pi
∂mi

may be decomposed as ∂Pi
∂mi

= ∂Pi
∂Vi

∂Vi
∂mi
, while

∂Pi
∂V
= −∂Pi

∂Vi
. Substituting, we get:

dπi
dmi

= N Ψ

·
∂Vi
∂mi

− ∂V

∂mi

¸
− k1,

where Ψ = (pi − c) q (pi) ∂Pi∂Vi
.

We can use the Þrst-order condition for the choice of pi to rewrite Ψ. This pricing

Þrst-order condition (dπi
dpi
= 0) is:

q (pi)Pi + (pi − c) q0 (pi)Pi +Ψ ∂Vi
∂pi

= 0.

Substituting Roy�s identity (∂Vi
∂pi
/∂Vi
∂y
= v0 (pi) = −q (pi)), we get:

(32) Ψ =
q (pi) + (pi − c) q0 (pi)

q (pi)
Pi.

At a symmetric equilibrium, Pi = 1/n, and noting that ∂Vi
∂mi

= σAA
0 (m), we get:

dπi
dmi

|sym = N
q (p) + (p− c) q0 (p)

q (p)

1

n

·
σAA

0 (m)− ∂V

∂mi

¸
− k1 = 0

or

N

·
σAA

0 (m)− ∂V

∂mi

¸
=

q (p)

q (p) + (p− c) q0 (p)nk1.

Comparing this expression with the relation for the optimum, (29) with (31), for the same

values of n and p, the value of m solving this expression is lower, so that me (n) < mo (n).
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Similarly, the free entry condition is: π = N (p− c) q (p) /n − K (m) = 0. Recall that

Ψ = (pi − c) q (pi) ∂Pi∂Vi
and that ∂Pi

∂Vi
= Ω(n)

σBn
(by (11)) so that this zero proÞt condition becomes

NΨσB/Ω (n) = K (m). Now from (32) we can write the equilibrium condition as:

(33)
NσB
nΩ (n)

= K (m)
q (p)

q (p) + (p− c) q0 (p) .

From (31), the LHS is simplyK (m) (1 + λ) when the price is the same as at the optimum

(i.e., when the zero-proÞt constraint holds). Comparing then (30) with (33) and using Lemma

3 (nΩ (n)B0 (n) < 1) shows that for the same values of m and p, the value of n solving (33)

is higher. This means that ne (m) > no (m).
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Notes1

1This is the same reason that Þrms choose different qualities in models of vertical differentiation - see

Shaked and Sutton [1982].

2The excessive number of Þrms result is reminiscent of Mankiw and Whinston [1986]. Their set-up though

is very different: single-product Þrms, Cournot competition, and a homogenous product.

3See Katz [1984], Champsaur and Rochet [1989], and Shaked and Sutton [1990] for previous analyses

of multiproduct Þrms under price competition. Recent work by Johnson and Myatt [2003] and Grossman

[2003] treats multiproduct Þrms under Cournot competition. Closest to the present work are Anderson

and de Palma [1992], Ottaviano and Thisse [1999], and Allanson and Montagna [2003]. These papers are

discussed in more detail below.

4An empirical application would have to relax the symmetry assumptions and allow Þrms to produce

products of different qualities, allow for heterogeneity across Þrms and differing costs to introducing products.

Anderson and de Palma [2001] analyze single-product Þrms and show there is a market bias that encourages

low quality products.

5A sophisticated application of the nested logit model by Goldberg [1995] studies Þrm pricing in the car

market.

6We show below that the nested CES model is covered by our analysis, and Verboven [1996] has shown

that it is consistent with aggregating the preferences of diverse consumers who make discrete choices of which

product to buy. To the best of our knowledge, no one has been able to show that the linear demand system

is consistent with a population of consumers making discrete choices, and in that sense it remains a pure

representative consumer model.

7The two-stage process described here can readily be extended to three or more stages: for example, a

consumer may choose for her vacation a country, then a resort, then a hotel.

8Most of the usual distributions used in economics (uniform, normal, Gumbel, log-normal, beta, gamma,

etc.) are log-concave. Log-concavity plays an important role in showing existence of a Nash price equilibrium
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with differentiated products, as shown by Caplin and Nalebuff [1991].

9Roy�s identity also applies here insofar as it yields the conditional demand as 1, which is just the

assumption that each consumer buys one unit.

10When the random terms are distributed according to the double exponential (also known as the Gumbel),

i.e. F (x) = exp [− exp (−x /µ2 − γ)], where γ is Euler�s constant, then A(mi) = lnmi, which is clearly

increasing and strictly concave in mi. In this case, the IIA property restricts the scope of the demand model.

11The elasticity form of (14) is pi"
Dik

∂Dik

∂pi"
= pi"

Pk|i
∂Pk|i
∂pi"

+
h
Vi
Pi
∂Pi
∂Vi

i h
pil
Vl

∂Vi
∂pi

i
. This shows that variants within

the same Þrm are substitutes if intra-nest elasticity (Þrst term) dominates the inter-nest elasticity.

12Under symmetry, it can be shown that the case of complementarity arises when σB is sufficiently large

relative to σA.

13This condition holds, for example, for the nested logit model when σB ≥ σA.
14An alternative cost assumption, we can consider Firm i as running mi different production lines, each

with its own Þxed and variable costs. The two cost assumptions are formally equivalent when marginal

production costs are constant. The model can readily be extended (but with additional notational heaviness)

to convex production costs.

15Note that this also corresponds to setting λ = 0 in (*) in Appendix 1 for mj , since when M is optimally

chosen in the maximization problem the marginal social beneÞt of an extra variant is identically zero.

16We shall not be concerned here about showing that such an equilibrium exists, although we note that

existence and symmetry was proved for the special case treated in Anderson and de Palma [1992], so we are

not dealing with a vacuous problem.

17It can be readily shown that each Þrm optimally sets the same price for each of its variants. This

property follows from maximizing proÞt within the nest, subject to the constraint of providing a given

expected surplus level, �Vi.

18This version would enable us to explicitly consider the issue that the number of Þrms should be an

integer. The product line analysis is rather more cumbersome with explicit integer constraints though.

19As we show below, this logic also applies when the choice of range is made simultaneously with the
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choice of price in the game among Þrms.

20In the earlier analysis, the equilibrium and optimum coincide only if the taste density is log-linear.

Here, even if this condition holds for g (.) so that the no (m) locus is coincident with the ne (m) locus, the

divergence of the other loci suffices to encourage strict over-entry.

21To see the latter property, suppose that σB = n−1
n σA so that products within the nest are independent

(the limit case of complementarity) Then, using the expressions from Anderson and de Palma [1992], we

have the equilibrium number of Þrms given by NσB
K = (n− 1) ¡n2 − n+ 1¢, which can lead to a solution

with a number of Þrms greater than 1.

22In the analysis up to here we have assumed effectively that v (pik) = −pik; applying Roy�s identity yields

the conditional demand as unity, which is consistent with the unit demand assumption.

23The elasticity form of the optimality condition corresponding to (24) is now ηA0 + ηK0 >
ηK
ηB0
, where ηK0

is the elasticity of K0 (m).

24To see this, suppose that product ranges were above the minimum efficient scale. Then reducing product

ranges and creating new Þrms at the same time (in order to keep the total number of products constant)

would raise consumer beneÞts from variety. At the same time this would reduce average production costs

per variety, so there is a distinct gain in shifting.

25It is also satisÞed by choosing identical markups over marginal cost, since
Pn
i=1 ∂Di/∂pj = 0, for all

j = 1...n.
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